Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant J ; 115(5): 1316-1330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37235700

RESUMEN

Increasing concentration of CO2 has significant impacts on many biological processes in plants, and its impact is closely associated with changes in the ratio of photosynthesis to photorespiration. Studies have reported that high CO2 can promote carbon fixing and alleviate plant oxidative damage in response to environmental stresses. However, the effect of high CO2 on fatty acid (FA) metabolism and cellular redox balance in FA-deficient plants is rarely reported. In this study, we identified a high-CO2 -requiring mutant cac2 through forward genetic screening. CAC2 encodes biotin carboxylase, which is one of the subunits of plastid acetyl-CoA carboxylase and participates in de novo FA biosynthesis. Null mutation of CAC2 is embryonic lethal. A point mutation of CAC2 in cac2 mutants produces severe defects in chloroplast development, plant growth and photosynthetic performance. These morphological and physiological defects were largely absent under high CO2 conditions. Metabolite analyses showed that FA contents in cac2-1 leaves were decreased, while photorespiratory metabolites, such as glycine and glycolate, did not significantly change. Meanwhile, cac2 exhibited higher reactive oxygen species (ROS) levels and mRNA expression of stress-responsive genes than the wild-type, indicating that cac2 plants may suffer oxidative stress under ambient CO2 conditions. Elevated CO2 significantly increased FA contents, especially C18:3-FA, and reduced ROS accumulation in cac2-1 leaves. We propose that stress mitigation by high CO2 in cac2 could be due to increased FA levels by promoting carbon assimilation, and the prevention of over-reduction due to decreased photorespiration.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Fotosíntesis/fisiología , Estrés Oxidativo , Hojas de la Planta/metabolismo , Plantas/metabolismo , Carbono/metabolismo , Ácidos Grasos/metabolismo
2.
Plant J ; 116(5): 1325-1341, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596913

RESUMEN

Sensing of environmental challenges, such as mechanical injury, by a single plant tissue results in the activation of systemic signaling, which attunes the plant's physiology and morphology for better survival and reproduction. As key signals, both calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ) interplay with each other to mediate plant systemic signaling. However, the mechanisms underlying Ca2+ -H2 O2 crosstalk are not fully revealed. Our previous study showed that the interaction between glycolate oxidase and catalase, key enzymes of photorespiration, serves as a molecular switch (GC switch) to dynamically modulate photorespiratory H2 O2 fluctuations via metabolic channeling. In this study, we further demonstrate that local wounding induces a rapid shift of the GC switch to a more interactive state in systemic leaves, resulting in a sharp decrease in peroxisomal H2 O2 levels, in contrast to a simultaneous outburst of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived apoplastic H2 O2 . Moreover, the systemic response of the two processes depends on the transmission of Ca2+ signaling, mediated by glutamate-receptor-like Ca2+ channels 3.3 and 3.6. Mechanistically, by direct binding and/or indirect mediation by some potential biochemical sensors, peroxisomal Ca2+ regulates the GC switch states in situ, leading to changes in H2 O2 levels. Our findings provide new insights into the functions of photorespiratory H2 O2 in plant systemic acclimation and an optimized systemic H2 O2 signaling via spatiotemporal interplay between the GC switch and NADPH oxidases.


Asunto(s)
Oxidorreductasas de Alcohol , Plantas , Catalasa/metabolismo , Plantas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Receptores de Glutamato , Peróxido de Hidrógeno/metabolismo
3.
Plant Physiol ; 193(2): 1381-1394, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37437116

RESUMEN

Photorespiration begins with the oxygenation reaction catalyzed by Rubisco and is the second highest metabolic flux in plants after photosynthesis. Although the core biochemical pathway of photorespiration has been well characterized, little is known about the underlying regulatory mechanisms. Some rate-limiting regulation of photorespiration has been suggested to occur at both the transcriptional and posttranslational levels, but experimental evidence is scarce. Here, we found that mitogen-activated protein kinase 2 (MAPK2) interacts with photorespiratory glycolate oxidase and hydroxypyruvate reductase, and the activities of these photorespiratory enzymes were regulated via phosphorylation modifications in rice (Oryza sativa L.). Gas exchange measurements revealed that the photorespiration rate decreased in rice mapk2 mutants under normal growth conditions, without disturbing photosynthesis. Due to decreased photorespiration, the levels of some key photorespiratory metabolites, such as 2-phosphoglycolate, glycine, and glycerate, significantly decreased in mapk2 mutants, but those of photosynthetic metabolites were not altered. Transcriptome assays also revealed that the expression levels of some flux-controlling genes in photorespiration were significantly downregulated in mapk2 mutants. Our findings provide molecular evidence for the association between MAPK2 and photorespiration and suggest that MAPK2 regulates the key enzymes of photorespiration at both the transcriptional and posttranslational phosphorylation levels in rice.


Asunto(s)
Oryza , Oryza/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fotosíntesis/genética , Plantas/metabolismo , Dióxido de Carbono/metabolismo
4.
Plant J ; 112(6): 1429-1446, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36382906

RESUMEN

The homeostasis of hydrogen peroxide (H2 O2 ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H2 O2 levels in plants. In this study, we demonstrate that the GLO-CAT complex in plants exists in different states, which are dynamically interchangeable in response to various stimuli, typically salicylic acid (SA), at the whole-plant level. More crucially, changes in the state of the complex were found to be closely linked to peroxisomal H2 O2 fluctuations, which were independent of the membrane-associated NADPH oxidase. Furthermore, evidence suggested that H2 O2 channeling occurred even in vitro when GLO and CAT worked cooperatively. These results demonstrate that dynamic changes in H2 O2 levels are physically created via photorespiratory metabolic channeling in plants, and that such H2 O2 fluctuations may serve as signals that are mechanistically involved in the known functions of photorespiratory H2 O2 . In addition, our study also revealed a new way for SA to communicate with H2 O2 in plants.


Asunto(s)
Peróxido de Hidrógeno , Plantas , Peróxido de Hidrógeno/metabolismo , Plantas/metabolismo , Homeostasis
5.
Plant Physiol ; 186(2): 1254-1268, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33713137

RESUMEN

Exposure to ultraviolet B radiation (UV-B) stress can have serious effects on the growth and development of plants. Germin-like proteins (GLPs) may be involved in different abiotic and biotic stress responses in different plants, but little is known about the role of GLPs in UV-B stress response and acclimation in plants. In the present study, knockout of GLP 8-14 (OsGLP1) using the CRISPR/Cas9 system resulted in mutant rice (Oryza sativa L.) plants (herein called glp1) that exhibited UV-B-dependent formation of lesion mimic in leaves. Moreover, glp1 grown under solar radiation (including UV-B) showed decreased plant height and increased leaf angle, but we observed no significant differences in phenotypes between wild-type (WT) plants and glp1 grown under artificial light lacking UV-B. Fv/Fm, Y (II) and the expression of many genes, based on RNA-seq analysis, related to photosynthesis were also only reduced in glp1, but not in WT, after transfer from a growth cabinet illuminated with artificial white light lacking UV-B to growth under natural sunlight. The genes-associated with flavonoid metabolism as well as UV resistance locus 8 (OsUVR8), phytochrome interacting factor-like 15-like (OsPIF3), pyridoxal 5'-phosphate synthase subunit PDX1.2 (OsPDX1.2), deoxyribodipyrimidine photolyase (OsPHR), and deoxyribodipyrimidine photolyase family protein-like (OsPHRL) exhibited lower expression levels, while higher expression levels of mitogen-activated protein kinase 5-like (OsMPK3), mitogen-activated protein kinase 13-like (OsMPK13), and transcription factor MYB4-like (OsMYB4) were observed in glp1 than in WT after transfer from a growth cabinet illuminated with artificial white light to growth under natural sunlight. Therefore, mutations in OsGLP1 resulted in rice plants more sensitive to UV-B and reduced expression of some genes for UV-B protection, suggesting that OsGLP1 is involved in acclimation to UV-B radiation.


Asunto(s)
Aclimatación , Glicoproteínas/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Glicoproteínas/genética , Luz , Oryza/fisiología , Oryza/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Rayos Ultravioleta
6.
Physiol Plant ; 174(3): e13692, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35482934

RESUMEN

Improving the grain yield of rice is a central goal of basic and applied scientific research. Here, we identified an anion transporter, OsAT1, localized in the endoplasmic reticulum and Golgi. OsAT1 is highly expressed in flag, stem, and sheath as monitored using qRT-PCR and pOsAT1::GUS. Thousand-grain weight, grain weight per plant, and content of starch were significantly increased in OsAT1 knock-down mutants (OsAT1-Ri) but significantly decreased in OsAT1 overexpressed lines (OsAT1-OE). In addition, the grain weight per plant increased by 6.17% to 6.78% in OsAT1-RNAi lines, whereas it decreased by 45.93% to 46.76% in OsAT1-OE lines, compared to wild-type. Moreover, the copper content was noticeably reduced in flag leaf of OsAT1-Ri lines and increased in OsAT1-OE lines. RNA-sequencing analysis of OsAT1-OE lines revealed that the genes related to starch biosynthesis and metabolism pathway were enriched in the down-regulated category. Thus, our results suggest that knock-down of OsAT1 in rice possibly reduces copper accumulation and improves the accumulation of storage starch, hence, increasing the grain size and weight. OsAT1 may be a useful gene to consider for cereal breeding programs.


Asunto(s)
Oryza , Aniones , Cobre , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo
7.
BMC Plant Biol ; 21(1): 326, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229625

RESUMEN

BACKGROUND: Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS: In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase ß (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION: We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/enzimología , Oxidorreductasas de Alcohol/genética , Vías Biosintéticas/efectos de la radiación , Respiración de la Célula/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Modelos Biológicos , Mutación/genética , Oryza/genética , Oryza/efectos de la radiación , Peroxisomas/metabolismo , Peroxisomas/efectos de la radiación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triptófano/metabolismo
8.
J Exp Bot ; 72(7): 2584-2599, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33483723

RESUMEN

The photorespiratory pathway is highly compartmentalized. As such, metabolite shuttles between organelles are critical to ensure efficient photorespiratory carbon flux. Arabidopsis plastidic glycolate/glycerate translocator 1 (PLGG1) has been reported as a key chloroplastic glycolate/glycerate transporter. Two homologous genes, OsPLGG1a and OsPLGG1b, have been identified in the rice genome, although their distinct functions and relationships remain unknown. Herein, our analysis of exogenous expression in oocytes and yeast shows that both OsPLGG1a and OsPLGG1b have the ability to transport glycolate and glycerate. Furthermore, we demonstrate in planta that the perturbation of OsPLGG1a or OsPLGG1b expression leads to extensive accumulation of photorespiratory metabolites, especially glycolate and glycerate. Under ambient CO2 conditions, loss-of-function osplgg1a or osplgg1b mutant plants exhibited significant decreases in photosynthesis efficiency, starch accumulation, plant height, and crop productivity. These morphological defects were almost entirely recovered when the mutant plants were grown under elevated CO2 conditions. In contrast to osplgg1a, osplgg1b mutant alleles produced a mild photorespiratory phenotype and had reduced accumulation of photorespiratory metabolites. Subcellular localization analysis showed that OsPLGG1a and OsPLGG1b are located in the inner and outer membranes of the chloroplast envelope, respectively. In vitro and in vivo experiments revealed that OsPLGG1a and OsPLGG1b have a direct interaction. Our results indicate that both OsPLGG1a and OsPLGG1b are chloroplastic glycolate/glycerate transporters required for photorespiratory metabolism and plant growth, and that they may function as a singular complex.


Asunto(s)
Cloroplastos/metabolismo , Ácidos Glicéricos/metabolismo , Glicolatos/metabolismo , Oryza , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Oryza/genética , Fotosíntesis , Plastidios/metabolismo , Isoformas de Proteínas/metabolismo
9.
BMC Plant Biol ; 20(1): 357, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727356

RESUMEN

BACKGROUND: The glyoxylate reductase (GR) multigene family has been described in various plant species, their isoforms show different biochemical features in plants. However, few studies have addressed the biological roles of GR isozymes, especially for rice. RESULTS: Here, we report a detailed analysis of the enzymatic properties and physiological roles of OsGR1 and OsGR2 in rice. The results showed that both enzymes prefer NADPH to NADH as cofactor, and the NADPH-dependent glyoxylate reducing activity represents the major GR activity in various tissues and at different growth stages; and OsGR1 proteins were more abundant than OsGR2, which is also a major contributor to total GR activities. By generating and characterizing various OsGR-genetically modified rice lines, including overexpression, single and double-knockout lines, we found that no phenotypic differences occur among the various transgenic lines under normal growth conditions, while a dwarfish growth phenotype was noticed under photorespiration-promoted conditions. CONCLUSION: Our results suggest that OsGR1 and OsGR2, with distinct enzymatic characteristics, function redundantly in detoxifying glyoxylate in rice plants under normal growth conditions, whereas both are simultaneously required under high photorespiration conditions.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Oryza/fisiología , Oxidorreductasas de Alcohol/genética , Regulación de la Expresión Génica de las Plantas , Glioxilatos/metabolismo , Isoenzimas/metabolismo , NAD/metabolismo , NADP/metabolismo , Oryza/enzimología , Fotosíntesis , Plantas Modificadas Genéticamente
10.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963632

RESUMEN

Banana (Musa acuminata, AAA group) is a representative climacteric fruit with essential nutrients and pleasant flavors. Control of its ripening determines both the fruit quality and the shelf life. NAC (NAM, ATAF, CUC2) proteins, as one of the largest superfamilies of transcription factors, play crucial roles in various functions, especially developmental processes. Thus, it is important to conduct a comprehensive identification and characterization of the NAC transcription factor family at the genomic level in M. acuminata. In this article, a total of 181 banana NAC genes were identified. Phylogenetic analysis indicated that NAC genes in M. acuminata, Arabidopsis, and rice were clustered into 18 groups (S1-S18), and MCScanX analysis disclosed that the evolution of MaNAC genes was promoted by segmental duplication events. Expression patterns of NAC genes during banana fruit ripening induced by ethylene were investigated using RNA-Seq data, and 10 MaNAC genes were identified as related to fruit ripening. A subcellular localization assay of selected MaNACs revealed that they were all localized to the nucleus. These results lay a good foundation for the investigation of NAC genes in banana toward the biological functions and evolution.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Musa/fisiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuenciación Completa del Genoma/métodos , Núcleo Celular/genética , Etilenos/farmacología , Evolución Molecular , Almacenamiento de Alimentos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Familia de Multigenes , Musa/efectos de los fármacos , Musa/genética , Filogenia
11.
BMC Plant Biol ; 19(1): 105, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885124

RESUMEN

BACKGROUND: NCA1 (NO CATALASE ACTIVITY 1) was recently identified in Arabidopsis as a chaperone protein to regulate catalase (CAT) activity through maintaining the folding of CAT. The gene exists mainly in higher plants; some plants, such as Arabidopsis, contain only one NCA1 gene, whereas some others such as rice harbor two copies. It is not yet understood whether and how both isoforms have functioned to regulate CAT activity in those two-copy-containing plant species. RESULTS: In this study, we first noticed that the spatiotemporal expression patterns of NCA1a and NCA1b were very similar in rice plants. Subsequent BiFC and yeast three-hybrid experiments demonstrated that both NCA1a and NCA1b show mutually exclusive, rather than simultaneous, interaction with CAT. For a further functional analysis, nca1a and nca1b single mutants or double mutants of rice were generated by CRISPR/Cas9. Analysis on these mutants under both normal and salinity stress conditions found that, as compared with WT, either nca1a or nca1b single mutant showed no difference at phenotypes and CAT activities, whereas the double mutants constantly displayed very low CAT activity (about 5%) and serious lesion phenotypes. CONCLUSIONS: These results suggest that NCA1a and NCA1b show mutually exclusive interaction with CAT to regulate CAT activity in a functionally-redundant manner in rice.


Asunto(s)
Catalasa/metabolismo , Oryza/enzimología , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino
12.
Plant Cell Rep ; 38(6): 731-739, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30903268

RESUMEN

KEY MESSAGE: OsIAAGLU could catalyze the reaction of IAA with glucose to generate IAA-glucose. Overexpression of OsIAAGLU in rice resulted in altered rice shoot architecture and root gravitropism. The distribution and levels of indole-3-acetic acid (IAA) within plant tissues are well known to play vital roles in plant growth and development. An important mechanism of regulating free IAA levels in monocots is formation of IAA ester conjugates. In this study, a cytosol-localized protein encoded by the rice gene of indole-3-acetic acid glucosyltransferase (OsIAAGLU) was found to catalyze the reaction of free IAA with glucose to generate IAA-glucose. Expression of OsIAAGLU could be induced by IAA and NAA. The number of tillers and leaf angle was significantly increased with a concomitant decrease in plant height and panicle length in the transgenic rice lines overexpressing OsIAAGLU compared to the wild-type (WT) plants. Phenotypes of iaaglu mutants constructed using the CRISPR/Cas9 system had no obvious differences with WT plants. Furthermore, overexpression of OsIAAGLU resulted in reduced sensitivity to IAA/NAA and altered gravitropic response of the roots in the transgenic plants. Free IAA contents in the leaves, root tips, and lamina joint of OsIAAGLU-overexpressing transgenic lines were lower than those of WT plants. These results support that OsIAAGLU could play a regulatory role in IAA homeostasis and rice architecture.


Asunto(s)
Glucosa/química , Glucosa/farmacología , Ácidos Indolacéticos/química , Ácidos Indolacéticos/farmacología , Oryza/efectos de los fármacos , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética
13.
Plant Cell Physiol ; 59(12): 2526-2535, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137570

RESUMEN

Photorespiration is an essential process for plant photosynthesis, development and growth in aerobic conditions. Recent studies have shown that photorespiration is an open system integrated with the plant primary metabolism network and intracellular redox systems, though the mechanisms of regulating photorespiration are far from clear. Through a forward genetic method, we identified a photorespiratory mutant pr1 (photorespiratory related 1), which produced a chlorotic and smaller photorespiratory growth phenotype with decreased chlorophyll content and accumulation of glycine and serine in ambient air. Morphological and physiological defects in pr1 plants can be largely abolished under elevated CO2 conditions. Genetic mapping and complementation confirmed that PR1 encodes an FtsH (Filamentation temperature-sensitive H)-like protein, FtsHi5. Reduced FtsHi5 expression in DEX-induced RNAi transgenic plants produced a similar growth phenotype with pr1 (ftsHi5-1). Transcriptome analysis suggested a changed expression pattern of redox-related genes and an increased expression of senescence-related genes in DEX: RNAi-FtsHi5 seedlings. Together with the observation that decreased accumulation of D1 and D2 proteins of photosystem II (PSII) and over-accumulation of reactive oxygen species (ROS) in ftsHi5 mutants, we hypothesize that FtsHi5 functions in maintaining the cellular redox balance and thus regulates photorespiratory metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Fotosíntesis , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Respiración de la Célula , Clorofila/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oxidación-Reducción , Fenotipo , Complejo de Proteína del Fotosistema II/metabolismo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestructura
14.
BMC Plant Biol ; 18(1): 44, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29548275

RESUMEN

BACKGROUND: Although decreased protein expressions have been observed in NOA1 (Nitric Oxide Associated protein 1) deficient plants, the molecular mechanisms of how NOA1 regulates protein metabolism remain poorly understood. In this study, we have used a global comparative proteomic approach for both OsNOA1 suppression and overexpression transgenic lines under two different temperatures, in combination with physiological and biochemical analyses to explore the regulatory mechanisms of OsNOA1 in rice. RESULTS: In OsNOA1-silenced or highly overexpressed rice, considerably different expression patterns of both chlorophyll and Rubisco as well as distinct phenotypes were observed between the growth temperatures at 22 °C and 30 °C. These observations led us to hypothesize there appears a narrow abundance threshold for OsNOA1 to function properly at lower temperatures, while higher temperatures seem to partially compensate for the changes of OsNOA1 abundance. Quantitative proteomic analyses revealed higher temperatures could restore 90% of the suppressed proteins to normal levels, whereas almost all of the remaining suppressed proteins were chloroplast ribosomal proteins. Additionally, our data showed 90% of the suppressed proteins in both types of transgenic plants at lower temperatures were located in the chloroplast, suggesting a primary effect of OsNOA1 on chloroplast proteins. Transcript analyses, along with in vitro pull-down experiments further demonstrated OsNOA1 is associated with the function of chloroplast ribosomes. CONCLUSIONS: Our results suggest OsNOA1 functions in a threshold-dependent manner for regulation of chloroplast proteins at lower temperatures, which may be mediated by interactions between OsNOA1 and chloroplast ribosomes.


Asunto(s)
Cloroplastos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteómica/métodos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Temperatura
15.
Transgenic Res ; 27(1): 61-74, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29392632

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) technology provides an efficient tool for editing the genomes of plants, animals and microorganisms. Glutamate:glyoxylate aminotransferase 1 (GGAT1) is a key enzyme in the photorespiration pathway; however, its regulation mechanism is largely unknown. Given that EMS-mutagenized ggat1 (Col-0 background) M2 pools have been generated, ggat1 (Ler background) should be very useful in the positional cloning of suppressor and/or enhancer genes of GGAT1. Unfortunately, such ggat1 (Ler) mutants are not currently available. In this study, CRISPR/Cas9 was used to generate ggat1 (Ler) mutants. Two GGAT1 target single-guide RNAs (sgRNAs) were constructed into pYLCRISPR/Cas9P35S-N, and flowering Arabidopsis (Ler) plants were transformed using an Agrobacterium tumefaciens-mediated floral dip protocol. Eleven chimeric and two heterozygous GGAT1-edited T1 lines of target 1 were separately screened from positive transgenic lines. Two ggat1 homozygous mutants, CTC-deletion and T-deletion at target 1, were generated from T2 generations of the 13 T1 lines. The edited mutation sites were found to be stable through generations regardless of whether the T-DNA was present. In addition, the genetic segregation of the mutation sites obeyed the Mendelian single gene segregation rule, and no mutations were detected at the possible off-target site. Also, the two independent ggat1 mutants had similar photorespiration phenotypes and down-regulated GGAT enzyme activity. Together, these results indicate that genetically stable ggat1 (Ler) mutants were generated by CRISPR/Cas9 genome editing, and these mutants will be used to promote the positional cloning of suppressor and/or enhancer genes of GGAT1 in our subsequent study.


Asunto(s)
Arabidopsis/fisiología , Sistemas CRISPR-Cas , Transaminasas/genética , Agrobacterium/genética , Arabidopsis/genética , Edición Génica/métodos , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Transaminasas/metabolismo
16.
BMC Plant Biol ; 17(1): 135, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28789632

RESUMEN

BACKGROUND: Glycolate oxidase (GLO) is a key enzyme for photorespiration in plants. There are four GLO genes encoding and forming different isozymes in rice, but their functional differences are not well understood. In this study, enzymatic and physiological characteristics of the GLO isozymes were comparatively analyzed. RESULTS: When expressed heterologously in yeast, GLO1, GLO4 and GLO1 + 4 showed the highest activities and lowest K m for glycolate as substrate, whereas GLO3 displayed high activities and affinities for both glycolate and L-lactate, and GLO5 was catalytically inactive with all substrates tested. To further reveal the physiological role of each GLO isozyme in plants, various GLO genetically modified rice lines were generated and functionally analyzed. GLO activity was significantly increased both in GLO1 and GLO4 overexpression lines. Nevertheless, when either GLO1 or GLO4 was knocked out, the activity was suppressed much more significantly in GLO1 knockout lines than in GLO4 knockout lines, and both knockout mutants exhibited obvious dwarfism phenotypes. Among GLO3 and GLO5 overexpression lines and RNAi lines, only GLO3 overexpression lines showed significantly increased L-lactate-oxidizing activity but no other noticeable phenotype changes. CONCLUSIONS: These results indicate that rice GLO isozymes have distinct enzymatic characteristics, and they may have different physiological functions in rice.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Oxidorreductasas de Alcohol/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
17.
Plant Mol Biol ; 92(6): 701-715, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27614468

RESUMEN

Most environmental perturbations have a direct or indirect deleterious impact on photosynthesis, and, in consequence, the overall energy status of the cell. Despite our increased understanding of convergent energy and stress signals, the connections between photosynthesis, energy and stress signals through putative common nodes are still unclear. Here we identified an endoplasmic reticulum (ER)-localized adenine nucleotide transporter1 (ER-ANT1), whose deficiency causes seedling lethality in air but viable under high CO2, exhibiting the typical photorespiratory phenotype. Metabolic analysis suggested that depletion of ER-ANT1 resulted in circadian rhythm disorders in sucrose synthesis and induced sucrose signaling pathways, indicating that the ER is involved in the regulation of vital energy metabolism in plants. In addition, the defect of ER-ANT1 triggers ER stress and activates the unfolded protein response in plant cells, suggesting ER stress and photorespiration are closely linked. These findings provide an important evidence for a key role of ER-localized ER-ANT1 in convergent energy and stress signals in rice. Our findings support the idea that ATP is a central signal involved in the plant response to a variety of stresses.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Oryza/fisiología , Transducción de Señal , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Oryza/metabolismo , Respuesta de Proteína Desplegada/fisiología
18.
BMC Genomics ; 16: 446, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26059100

RESUMEN

BACKGROUND: Banana and plantain (Musa spp.) comprise an important part of diets for millions of people around the globe. Low temperature is one of the key environmental stresses which greatly affects the global banana production. To understand the molecular mechanism of the cold-tolerance in plantain we used RNA-Seq based comparative transcriptomics analyses for both cold-sensitive banana and cold-tolerant plantain subjected to the cold stress for 0, 3 and 6 h. RESULTS: The cold-response genes at early stage are identified and grouped in both species by GO analysis. The results show that 10 and 68 differentially expressed genes (DEGs) are identified for 3 and 6 h of cold stress respectively in plantain, while 40 and 238 DEGs are identified respectively in banana. GO classification analyses show that the majority of DEGs identified in both banana and plantain belong to 11 categories including regulation of transcription, response to stress signal transduction, etc. A similar profile for 28 DEGs was found in both banana and plantain for 6 h of cold stress, suggesting both share some common adaptation processes in response to cold stress. There are 17 DEGs found uniquely in cold-tolerance plantain, which were involved in signal transduction, abiotic stress, copper ion equilibrium, photosynthesis and photorespiration, sugar stimulation, protein modifications etc. Twelve early responsive genes including ICE1 and MYBS3 were selected and further assessed and confirmed by qPCR in the extended time course experiments (0, 3, 6, 24 and 48 h), which revealed significant expression difference of key genes in response to cold stress, especially ICE1 and MYBS3 between cold-sensitive banana and cold-tolerant plantain. CONCLUSIONS: We found that the cold-tolerance pathway appears selectively activated by regulation of ICE1 and MYBS3 expression in plantain under different stages of cold stress. We conclude that the rapid activation and selective induction of ICE1 and MYBS3 cold tolerance pathways in plantain, along with expression of other cold-specific genes, may be one of the main reasons that plantain has higher cold resistance than banana.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Musa/clasificación , Musa/genética , Proteínas de Plantas/genética , Frío , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia de ARN/métodos , Estrés Fisiológico
20.
Plant Cell Physiol ; 55(11): 2008-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25273891

RESUMEN

Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.


Asunto(s)
Ácido Abscísico/metabolismo , Catalasa/metabolismo , Cobre/farmacología , Germinación/efectos de los fármacos , Oryza/efectos de los fármacos , Oryza/metabolismo , Catalasa/antagonistas & inhibidores , Catalasa/genética , Cobre/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/biosíntesis , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Estrés Fisiológico , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA