Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 18(48): 9172-9180, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36444757

RESUMEN

A conical surface can realize the spontaneous transportation of micro-sized oil droplets in an aqueous environment without energy input, exhibiting great potential for applications in microfluidics, chemical micro-reactors, water remediation, etc. However, the precise manipulation of an oil droplet on a cone is still very challenging because the dynamic behavior of a droplet on a cone is not fully understood. Herein, the dynamic behavior of oil droplets on a cone is quantitively studied via numerical simulations, and the effects of wettability, apex angle, and droplet size on the droplet's dynamic behavior are systematically analyzed. The results show that the moving velocity and transport distance of the droplet on the cone are highly related to the droplet shape on the cone. It was found that a clamshell-shaped droplet moves faster than a barrel-shaped droplet. Besides, the clamshell-shaped droplet with a larger size, on the cone with a smaller apex angle and smaller contact angle tends to obtain a faster moving speed and a longer transportation distance. The droplet shape adopted on the cone was determined by the cone wettability and the size of the droplet relative to the local curvature of the cone. It was found that the oil droplet tends to form a barrel shape on the cone with a highly oleophilic and small apex angle, and tends to form a clamshell shape on cones with a highly oleophobic and large apex angle. In addition, the droplet might transit from a barrel shape to a clamshell shape when it moves from the cone tip to the cone base, and the trigger time of the transit is negatively correlated with the contact angle and apex angle of the cone. This work provides a microscale understanding of the dynamic behavior of an underwater oil droplet on a cone, and also offers theoretical guidance for manipulating the behavior of a droplet on a cone and for the rational design of cone surfaces for spontaneous droplet transport and droplet collection.

2.
ACS Appl Mater Interfaces ; 15(51): 59920-59930, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38100412

RESUMEN

Learning from nature, many bionic materials and surfaces have been developed for the directional transportation of water and fog collection. However, current research mainly focuses on the self-transportation behavior of droplets in air-phase environments, rarely concerning underoil environments. Herein, in this work, a liquid-assisted bionic copper needle was fabricated for the rapid self-transportation of water droplets in air and oil environments. The water droplet can be spontaneously transported on the as-prepared bionic copper needle from the tip to the base. More importantly, the water-prewetted bionic copper needle can achieve the ultrafast unidirectional transportation of a water droplet in an oil environment, showing a maximum transport velocity of 76.2 mm/s and a transport distance over 33 mm, which were ten times higher than those reported in the previous research. Additionally, the droplet transport mechanism was revealed. The effects of the apex angle and tilt angle of the as-prepared bionic needle and droplet volume on the self-transportation behavior of water droplets were systematically investigated. The results indicated that the transport velocity of the water droplet decreased with the increase of the apex angle of the conical needle, while it increased with the increase of the droplet volume and needle tilt angle. Furthermore, the as-prepared bionic copper needle exhibited excellent fog collection performance with a single copper needle fog collecting efficiency of up to 2220 mg/h, which was 9.7 times that of the original copper needle. In summary, this work provides a simple and novel method to fabricate bionic copper needles for the directional self-transportation of water droplets in air-phase and oil-phase environments as well as efficient fog collection. It shows great application potential in the fields of microfluidics, desalination, and freshwater collection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA