Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 43(7): 114393, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38944835

RESUMEN

Vitamin D receptor (VDR) has been implicated in fatty liver pathogenesis, but its role in the regulation of organismal energy usage remains unclear. Here, we illuminate the evolutionary function of VDR by demonstrating that zebrafish Vdr coordinates hepatic and organismal energy homeostasis through antagonistic regulation of nutrient storage and tissue growth. Hepatocyte-specific Vdr impairment increases hepatic lipid storage, partially through acsl4a induction, while simultaneously diminishing fatty acid oxidation and liver growth. Importantly, Vdr impairment exacerbates the starvation-induced hepatic storage of systemic fatty acids, indicating that loss of Vdr signaling elicits hepatocellular energy deficiency. Strikingly, hepatocyte Vdr impairment diminishes diet-induced systemic growth while increasing hepatic and visceral fat in adult fish, revealing that hepatic Vdr signaling is required for complete adaptation to food availability. These data establish hepatocyte Vdr as a regulator of organismal energy expenditure and define an evolutionary function for VDR as a transcriptional effector of environmental nutrient supply.


Asunto(s)
Metabolismo Energético , Hepatocitos , Receptores de Calcitriol , Pez Cebra , Animales , Pez Cebra/metabolismo , Receptores de Calcitriol/metabolismo , Hepatocitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Hígado/metabolismo , Nutrientes/metabolismo , Transducción de Señal , Metabolismo de los Lípidos , Homeostasis , Ácidos Grasos/metabolismo
2.
Dev Neurobiol ; 81(5): 671-695, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33314626

RESUMEN

During embryonic development of bilaterally symmetrical organisms, neurons send axons across the midline at specific points to connect the two halves of the nervous system with a commissure. Little is known about the cells at the midline that facilitate this tightly regulated process. We exploit the conserved process of vertebrate embryonic development in the zebrafish model system to elucidate the identity of cells at the midline that may facilitate postoptic (POC) and anterior commissure (AC) development. We have discovered that three different gfap+ astroglial cell morphologies persist in contact with pathfinding axons throughout commissure formation. Similarly, olig2+ progenitor cells occupy delineated portions of the postoptic and anterior commissures where they act as multipotent, neural progenitors. Moreover, we conclude that both gfap+ and olig2+ progenitor cells give rise to neuronal populations in both the telencephalon and diencephalon; however, these varied cell populations showed significant developmental timing differences between the telencephalon and diencephalon. Lastly, we also showed that fli1a+ mesenchymal cells migrate along the presumptive commissure regions before and during midline axon crossing. Furthermore, following commissure maturation, specific blood vessels formed at the midline of the POC and immediately ventral and parallel to the AC. This comprehensive account of the cellular populations that correlate with the timing and position of commissural axon pathfinding has supported the conceptual modeling and identification of the early forebrain architecture that may be necessary for proper commissure development.


Asunto(s)
Prosencéfalo , Pez Cebra , Animales , Axones/metabolismo , Neuronas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA