Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-26459987

RESUMEN

Osmoregulation and digestion are energetically demanding, and crabs that move into low salinity environments to feed must be able to balance the demands of both processes. Achieving this balance may pose greater challenges for weak than for efficient osmoregulators. This study examined the rate of oxygen consumption (MO2) of Carcinus maenas (efficient osmoregulator) and Cancer irroratus (weak osmoregulator) as a function of feeding and hyposaline stress. The MO2 increased 2-fold in both species following feeding. The MO2 increased and remained elevated in fasted crabs during acute hyposaline exposure. When hyposaline stress occurred after feeding, C. maenas responded with an immediate summation of the MO2 associated with feeding and hyposaline stress, whereas C. irroratus reacted with a partial summation of responses in a salinity of 24‰, but were unable to sum responses in 16‰. C. irroratus exhibited longer gut transit times. This may be due to an inability to regulate osmotic water onload as efficiently as C. maenas. Mechanical digestion in crabs can account for a significant portion of SDA, and a short term interruption led to the delay in summation of metabolic demands. Although protein synthesis is reported to account for the majority of SDA, this did not appear to be the case here. Protein synthesis rates were higher in C. irroratus but neither feeding or salinity affected protein synthesis rates of either species which suggests that protein synthesis can continue in low salinity as long as substrates are available.


Asunto(s)
Braquiuros/fisiología , Digestión/fisiología , Salinidad , Animales , Ayuno , Tránsito Gastrointestinal , Hemolinfa/metabolismo , Masculino , Contracción Muscular/fisiología , Concentración Osmolar , Consumo de Oxígeno , Fenilalanina/metabolismo , Biosíntesis de Proteínas , Estómago/fisiología , Factores de Tiempo
2.
Physiol Biochem Zool ; 95(6): 484-499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36154926

RESUMEN

AbstractThe rise in temperature associated with climate change may threaten the persistence of stenothermal organisms with limited capacities for beneficial thermal acclimation. We investigated the capacity for within-generation and transgenerational thermal responses in brook trout (Salvelinus fontinalis), a cold-adapted salmonid. Adult fish were acclimated to temperatures within (10°C) and above (21°C) their thermal optimum for 6 mo before spawning, then mated in a full factorial breeding design to produce offspring from cold- and warm-acclimated parents and bidirectional crosses between parents from both temperature treatments. Offspring from families were subdivided and reared at two acclimation temperatures representing their current (15°C) and anticipated future (19°C) habitat temperatures. Offspring thermal physiology was measured as the rate of oxygen consumption (Mo2) during an acute change in temperature (increase of 2°C h-1) to observe their Mo2-temperature relationship. We recorded resting Mo2, peak (highest achieved, thermally induced) Mo2, and critical thermal maximum (CTM) as performance metrics. Although limited, within-generation plasticity was greater than transgenerational plasticity, with offspring warm acclimation elevating CTM by 0.5°C but slightly lowering peak thermally induced Mo2. Transgenerational plasticity was evident as a slightly elevated resting Mo2 and a shift of the Mo2-temperature relationship to higher rates overall in offspring from warm-acclimated parents. Furthermore, offspring whose parents were warm acclimated were in worse condition than those whose parents were cold acclimated. Both parents contributed to offspring thermal responses; however, the paternal effect was stronger. Despite the existence of within-generation and transgenerational plasticity in brook trout, it is unlikely that these will be sufficient for coping with long-term changes to environmental temperatures.


Asunto(s)
Salmonidae , Aclimatación/fisiología , Animales , Consumo de Oxígeno , Salmonidae/genética , Temperatura , Trucha/genética
3.
Mol Ecol Resour ; 22(2): 679-694, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34351050

RESUMEN

Here, we present an annotated, chromosome-anchored, genome assembly for Lake Trout (Salvelinus namaycush) - a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long-read sequencing, paired-end Illumina sequencing, proximity ligation (Hi-C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome-sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k-mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self-versus-self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex-averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.


Asunto(s)
Cromosomas , Genoma , Animales , Cromosomas/genética , Femenino , Ligamiento Genético , Sintenía , Trucha/genética
4.
Conserv Physiol ; 9(1): coab021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959288

RESUMEN

The capacity of ectotherms to cope with rising temperatures associated with climate change is a significant conservation concern as the rate of warming is likely too rapid to allow for adaptative responses in many populations. Transgenerational plasticity (TGP), if present, could potentially buffer some of the negative impacts of warming on future generations. We examined TGP in lake trout to assess their inter-generational potential to cope with anticipated warming. We acclimated adult lake trout to cold (10°C) or warm (17°C) temperatures for several months, then bred them to produce offspring from parents within a temperature treatment (cold-acclimated and warm-acclimated parents) and between temperature treatments (i.e. reciprocal crosses). At the fry stage, offspring were also acclimated to cold (11°C) or warm (15°C) temperatures. Thermal performance was assessed by measuring their critical thermal maximum (CTM) and the change in metabolic rate during an acute temperature challenge. From this dataset, we also determined their resting and peak (highest achieved, thermally induced) metabolic rates. There was little variation in offspring CTM or peak metabolic rate, although cold-acclimated offspring from warm-acclimated parents exhibited elevated resting metabolic rates without a corresponding increase in mass or condition factor, suggesting that transgenerational effects can be detrimental when parent and offspring environments mismatch. These results suggest that the limited TGP in thermal performance of lake trout is unlikely to significantly influence population responses to projected increases in environmental temperatures.

5.
J Comp Physiol B ; 184(4): 425-36, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24531572

RESUMEN

The effect of meal type on specific dynamic action was investigated in the green shore crab, Carcinus maenas. When the crabs were offered a meal of fish, shrimp, or mussel of 3 % of their body mass the duration of the SDA response and thus the resultant SDA was lower for the mussel, compared with the shrimp or fish meals. In feeding behaviour experiments the crabs consumed almost twice as much mussel compared with fish or shrimp. When the animals were allowed to feed on each meal until satiated, the differences in the SDA response were abolished. The mussel was much softer (compression test) than the fish or shrimp meal, and meal texture is known to affect the SDA response in amphibians and reptiles. When the crabs were offered a meal of homogenized fish muscle or whole fish muscle, the SDA for the homogenized meal was approximately 35 % lower. This suggested that a significant portion of the SDA budget in decapod crustaceans may be related to mechanical digestion. This is not unexpected since the foregut is supplied by over forty muscles which control the cutting and grinding movements of the gastric mill apparatus. There were slight, but significant differences in protein, lipid, moisture and total energy content of each meal type. Three prepared meals that were high in either protein, lipid or carbohydrate were offered to the crabs to determine if the nutrient content was also a contributing factor to the observed differences in the SDA. The crabs did not eat the prepared meals as readily as the natural food items and as they are messy feeders there was a large variation in the amount of food eaten. The lack of significant differences in the SDA response as a function of nutrient content was likely due to differences in amount of food eaten, which is a major factor determining the SDA response. The differences in SDA when consuming natural food items were likely due to a combination of the costs of mechanical digestion, variation in nutrient content and food preference: determining how each of these factors contributes to the overall SDA budget remains a pressing question for comparative physiologists.


Asunto(s)
Alimentación Animal , Braquiuros/fisiología , Animales , Digestión/fisiología , Conducta Alimentaria/fisiología , Masculino , Consumo de Oxígeno/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA