Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(5): 056801, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26894726

RESUMEN

Deterministic control over the periodic geometrical arrangement of the constituent atoms is the backbone of the material properties, which, along with the interactions, define the electronic and magnetic ground state. Following this notion, a bilayer of a prototypical rare-earth nickelate, NdNiO_{3}, combined with a dielectric spacer, LaAlO_{3}, has been layered along the pseudocubic [111] direction. The resulting artificial graphenelike Mott crystal with magnetic 3d electrons has antiferromagnetic correlations. In addition, a combination of resonant X-ray linear dichroism measurements and ab initio calculations reveal the presence of an ordered orbital pattern, which is unattainable in either bulk nickelates or nickelate based heterostructures grown along the [001] direction. These findings highlight another promising venue towards designing new quantum many-body states by virtue of geometrical engineering.

2.
Phys Rev Lett ; 104(16): 166804, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482074

RESUMEN

The perovskite SrTiO3-LaAlO3 structure has advanced to a model system to investigate the rich electronic phenomena arising at polar oxide interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO3 capping layer prevents atomic reconstruction at the LaAlO3 surface and triggers the electronic reconstruction at a significantly lower LaAlO3 film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.

3.
Nat Commun ; 9(1): 1458, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654231

RESUMEN

The manipulation of the spin degrees of freedom in a solid has been of fundamental and technological interest recently for developing high-speed, low-power computational devices. There has been much work focused on developing highly spin-polarized materials and understanding their behavior when incorporated into so-called spintronic devices. These devices usually require spin splitting with magnetic fields. However, there is another promising strategy to achieve spin splitting using spatial symmetry breaking without the use of a magnetic field, known as Rashba-type splitting. Here we report evidence for a giant Rashba-type splitting at the interface of LaTiO3 and SrTiO3. Analysis of the magnetotransport reveals anisotropic magnetoresistance, weak anti-localization and quantum oscillation behavior consistent with a large Rashba-type splitting. It is surprising to find a large Rashba-type splitting in 3d transition metal oxide-based systems such as the LaTiO3/SrTiO3 interface, but it is promising for the development of a new kind of oxide-based spintronics.

4.
Sci Rep ; 8(1): 8489, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855484

RESUMEN

Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.

5.
J Phys Condens Matter ; 19(31): 315217, 2007 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21694117

RESUMEN

We present a detailed study of the spin-dependent electronic structure of thin epitaxial magnetite films of different crystallographic orientations. Using spin- and angle-resolved photoelectron spectroscopy at room temperature, we determine for epitaxial Fe(3)O(4)(111) films a maximum spin polarization value of -(80 ± 5)% near E(F). The spin-resolved photoelectron spectra for binding energies between 1.5 eV and E(F) show good agreement with the spin-split band structure from density functional theory (DFT) calculations which predict an overall energy gap in the spin-up electron bands in high symmetry directions, thus providing evidence for the half-metallic ferromagnetic state of Fe(3)O(4) in the [111] direction. In the case of the Fe(3)O(4)(100) surface, both the spin-resolved photoelectron spectroscopy experiments and the DFT density of states give evidence for a half-metal to metal transition: the measured spin polarization of about -(55 ± 10)% at E(F) and the theoretical value of -40% are significantly lower than the -100% predicted by local spin density approximation (LSDA) calculations for the bulk magnetite crystal as well as the -(80 ± 5)% obtained for the Fe(3)O(4)(111) films. The experimental findings were corroborated by DFT calculations as due to a surface reconstruction leading to the electronic states in the majority-spin band gap and thus to the reduced spin polarization.

6.
Sci Rep ; 5: 7997, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613569

RESUMEN

Polar oxide interfaces are an important focus of research due to their novel functionality which is not available in the bulk constituents. So far, research has focused mainly on heterointerfaces derived from the perovskite structure. It is important to extend our understanding of electronic reconstruction phenomena to a broader class of materials and structure types. Here we report from high-resolution transmission electron microscopy and quantitative magnetometry a robust ­ above room temperature (Curie temperature TC ≫ 300 K) ­ environmentally stable- ferromagnetically coupled interface layer between the antiferromagnetic rocksalt CoO core and a 2-4 nm thick antiferromagnetic spinel Co3O4 surface layer in octahedron-shaped nanocrystals. Density functional theory calculations with an on-site Coulomb repulsion parameter identify the origin of the experimentally observed ferromagnetic phase as a charge transfer process (partial reduction) of Co(3+) to Co(2+) at the CoO/Co3O4 interface, with Co(2+) being in the low spin state, unlike the high spin state of its counterpart in CoO. This finding may serve as a guideline for designing new functional nanomagnets based on oxidation resistant antiferromagnetic transition metal oxides.

7.
Nat Commun ; 5: 4291, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25000146

RESUMEN

Perovskite materials engineered in epitaxial heterostructures have been intensely investigated during the last decade. The interface formed by an LaAlO3 thin film grown on top of a TiO2-terminated SrTiO3 substrate hosts a two-dimensional electronic system and has become the prototypical example of this field. Although controversy exists regarding some of its physical properties and their precise origin, it is universally found that conductivity only appears beyond an LaAlO3 thickness threshold of four unit cells. Here, we experimentally demonstrate that this critical thickness can be reduced to just one unit cell when a metallic film of cobalt is deposited on top of LaAlO3. First-principles calculations indicate that Co modifies the electrostatic boundary conditions and induces a charge transfer towards the Ti 3d bands, supporting the electrostatic origin of the electronic system at the LaAlO3/SrTiO3 interface. Our results expand the interest of this low-dimensional oxide system from in-plane to perpendicular transport and to the exploration of elastic and inelastic tunnel-type transport of (spin-polarized) carriers.

8.
Philos Trans A Math Phys Eng Sci ; 370(1977): 4904-26, 2012 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22987035

RESUMEN

A wealth of intriguing properties emerge in the seemingly simple system composed of the band insulators LaAlO(3) and SrTiO(3) such as a two-dimensional electron gas, superconductivity and magnetism. In this paper, we review the current insight obtained from first principles calculations on the mechanisms governing the behaviour of thin LaAlO(3) films on SrTiO(3)(001). In particular, we explore the strong dependence of the electronic properties on the surface and interface termination, the finite film thickness, lattice polarization and defects. A further aspect that is addressed is how the electronic behaviour and functionality can be tuned by an SrTiO(3) capping layer, adsorbates and metallic contacts. Lastly, we discuss recent reports on the coexistence of magnetism and superconductivity in this system for what they might imply about the electronic structure of this system.

9.
Phys Rev Lett ; 94(12): 126101, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15903940

RESUMEN

Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wavelike structure along the [110] direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed via x-ray diffraction analysis. The stabilization of the Fe3O4(001) surface goes together with dramatic changes in the electronic and magnetic properties, e.g., a half metal to metal transition.

10.
Phys Rev Lett ; 90(7): 076101, 2003 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12633249

RESUMEN

We present a combined theoretical and experimental study of island nucleation and growth in the deposition of Co on Cu(001)-a prototype for understanding heteroepitaxial growth involving intermixing. Experimentally, ion scattering is employed. Using density-functional theory, we obtain energy barriers for the various elementary processes and incorporate these into a kinetic Monte Carlo program to simulate the heteroepitaxial growth. Both the simulations and the experiments show a unique N-shape dependence of the island density on temperature that stems from the interplay and competition of the different processes involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA