Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Mol Genet ; 32(7): 1102-1113, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36308430

RESUMEN

TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.


Asunto(s)
Síndromes de Tricotiodistrofia , Xerodermia Pigmentosa , Humanos , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Reparación del ADN/genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología , Mutación , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patología , Ribosomas/genética , Ribosomas/metabolismo
2.
Br J Haematol ; 204(1): 292-305, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37876306

RESUMEN

Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation. Biallelic mutations in the SBDS gene are found in ~90% of SDS patients, ~55% of whom carry the c.183-184TA>CT nonsense mutation. Several translational readthrough-inducing drugs aimed at suppressing nonsense mutations have been developed. One of these, ataluren, has received approval in Europe for the treatment of Duchenne muscular dystrophy. We previously showed that ataluren can restore full-length SBDS protein synthesis in SDS-derived bone marrow cells. Here, we extend our preclinical study to assess the functional restoration of SBDS capabilities in vitro and ex vivo. Ataluren improved 80S ribosome assembly and total protein synthesis in SDS-derived cells, restored myelopoiesis in myeloid progenitors, improved neutrophil chemotaxis in vitro and reduced neutrophil dysplastic markers ex vivo. Ataluren also restored full-length SBDS synthesis in primary osteoblasts, suggesting that its beneficial role may go beyond the myeloid compartment. Altogether, our results strengthened the rationale for a Phase I/II clinical trial of ataluren in SDS patients who harbour the nonsense mutation.


Asunto(s)
Enfermedades de la Médula Ósea , Insuficiencia Pancreática Exocrina , Lipomatosis , Humanos , Síndrome de Shwachman-Diamond , Proteína p53 Supresora de Tumor/genética , Lipomatosis/genética , Codón sin Sentido , Mielopoyesis , Neutrófilos/metabolismo , Quimiotaxis , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/terapia , Insuficiencia Pancreática Exocrina/genética , Ribosomas/metabolismo
3.
J Cell Sci ; 135(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36314272

RESUMEN

NOC1 is a nucleolar protein necessary in yeast for both transport and maturation of ribosomal subunits. Here, we show that Drosophila NOC1 (annotated CG7839) is necessary for rRNAs maturation and for a correct animal development. Its ubiquitous downregulation results in a dramatic decrease in polysome level and of protein synthesis. NOC1 expression in multiple organs, such as the prothoracic gland and the fat body, is necessary for their proper functioning. Reduction of NOC1 in epithelial cells from the imaginal discs results in clones that die by apoptosis, an event that is partially rescued in a Minute/+ background, suggesting that reduction of NOC1 induces the cells to become less fit and to acquire a 'loser' state. NOC1 downregulation activates the pro-apoptotic Eiger-JNK pathway and leads to an increase of Xrp1, which results in the upregulation of DILP8, a member of the insulin/relaxin-like family known to coordinate organ growth with animal development. Our data underline NOC1 as an essential gene in ribosome biogenesis and highlight its novel functions in the control of growth and cell competition.


Asunto(s)
Competencia Celular , Precursores del ARN , Sistema de Señalización de MAP Quinasas
4.
BMC Cancer ; 23(1): 1194, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057796

RESUMEN

BACKGROUND: Myxofibrosarcoma is a rare malignant soft tissue sarcoma characterised by multiple local recurrence and can become of higher grade with each recurrence. Consequently, myxofibrosarcoma represents a burden for patients, a challenge for clinicians, and an interesting disease to study tumour progression. Currently, few myxofibrosarcoma preclinical models are available. METHODS: In this paper, we present a spontaneously immortalised myxofibrosarcoma patient-derived cell line (MF-R 3). We performed phenotypic characterization through multiple biological assays and analyses: proliferation, clonogenic potential, anchorage-independent growth and colony formation, migration, invasion, AgNOR staining, and ultrastructural evaluation. RESULTS: MF-R 3 cells match morphologic and phenotypic characteristics of the original tumour as 2D cultures, 3D aggregates, and on the chorioallantoic membrane of chick embryos. Overall results show a clear neoplastic potential of this cell line. Finally, we tested MF-R 3 sensitivity to anthracyclines in 2D and 3D conditions finding a good response to these drugs. CONCLUSIONS: In conclusion, we established a novel patient-derived myxofibrosarcoma cell line that, together with the few others available, could serve as an important model for studying the molecular pathogenesis of myxofibrosarcoma and for testing new drugs and therapeutic strategies in diverse experimental settings.


Asunto(s)
Fibrosarcoma , Histiocitoma Fibroso Maligno , Sarcoma , Animales , Adulto , Humanos , Embrión de Pollo , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Línea Celular Tumoral
5.
Nucleic Acids Res ; 48(2): 770-787, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799629

RESUMEN

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Procesamiento Postranscripcional del ARN/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Regiones no Traducidas 5'/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Niño , Células Eritroides , Femenino , Humanos , Masculino , Mutación/genética , Precursores del ARN/genética , ARN Mensajero/genética , Secuenciación del Exoma
6.
Biochim Biophys Acta ; 1866(2): 330-338, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27815156

RESUMEN

In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation. Here we provide an overview of the connections linking ribosomal RNA modifications to ribosome function, and suggest how aberrant modifications may affect the control of the expression of key cancer genes, thus contributing to tumor development. In addition, the future perspectives in this field are discussed.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/etiología , Edición de ARN , ARN Ribosómico/genética , Humanos , Neoplasias/genética
7.
FASEB J ; 29(8): 3472-82, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25934701

RESUMEN

Dyskerin is a pseudouridine (ψ) synthase involved in fundamental cellular processes including uridine modification in rRNA and small nuclear RNA and telomere stabilization. Dyskerin functions are altered in X-linked dyskeratosis congenita (X-DC) and cancer. Dyskerin's role in rRNA pseudouridylation has been suggested to underlie the alterations in mRNA translation described in cells lacking dyskerin function, although relevant direct evidences are currently lacking. Our purpose was to establish definitely whether defective dyskerin function might determine an intrinsic ribosomal defect leading to an altered synthetic activity. Therefore, ribosomes from dyskerin-depleted human cells were purified and 1) added to a controlled reticulocyte cell-free system devoid of ribosomes to study mRNA translation; 2) analyzed for protein contamination and composition by mass spectrometry, 3) analyzed for global pseudouridylation levels. Ribosomes purified from dyskerin-depleted cells showed altered translational fidelity and internal ribosome entry site (IRES)-mediated translation. These ribosomes displayed reduced uridine modification, whereas they were not different in terms of protein contamination or ribosomal protein composition with respect to ribosomes from matched control cells with full dyskerin activity. In conclusion, lack of dyskerin function in human cells induces a defect in rRNA uridine modification, which is sufficient to alter ribosome activity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas/genética , Ribosomas/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Sistema Libre de Células/metabolismo , Humanos , Células MCF-7 , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Ribosómico/genética , Ribosomas/genética , Telómero/genética , Telómero/metabolismo
8.
Biochim Biophys Acta ; 1843(9): 1796-1804, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24747690

RESUMEN

CXCL12 and its unique receptor CXCR4, is critical for the homing of a variety of cell lineages during both development and tissue repair. CXCL12 is particularly important for the recruitment of hemato/lymphopoietic cells to their target organs. In conjunction with the damage-associated alarmin molecule HMGB1, CXCL12 mediates immune effector and stem/progenitor cell migration towards damaged tissues for subsequent repair. Previously, we showed that cell migration to HMGB1 simultaneously requires both IKKß and IKKα-dependent NF-κB activation. IKKß-mediated activation maintains sufficient expression of HMGB1's receptor RAGE, while IKKα-dependent NF-κB activation ensures continuous production of CXCL12, which complexes with HMGB1 to engage CXCR4. Here using fibroblasts and primary mature macrophages, we show that IKKß and IKKα are simultaneously essential for cell migration in response to CXCL12 alone. Non-canonical NF-κB pathway subunits RelB and p52 are also both essential for cell migration towards CXCL12, suggesting that IKKα is required to drive non-canonical NF-κB signaling. Flow cytometric analyses of CXCR4 expression show that IKKß, but not IKKα, is required to maintain a critical threshold level of this CXCL12 receptor. Time-lapse video microscopy experiments in primary MEFs reveal that IKKα is required both for polarization of cells towards a CXCL12 gradient and to establish a basal level of velocity towards CXCL12. In addition, CXCL12 modestly up-regulates IKKα-dependent p52 nuclear translocation and IKKα-dependent expression of the CXCL12 gene. On the basis of our collective results we posit that IKKα is needed to maintain the basal expression of a critical protein co-factor required for cell migration to CXCL12.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/farmacología , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Movimiento Celular/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal/genética , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
Int J Cancer ; 136(5): E272-81, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25273595

RESUMEN

Tumors characterized by an intense ribosome biogenesis often display a more aggressive behavior. Ribosomal RNA (rRNA) synthesis is controlled at several levels, including the epigenetic regulation of the condensation of chromatin portions containing rRNA genes. JHDM1B (Jumonji C histone demethylase 1B) is a histone demethylase able to regulate the accessibility of rRNA genes. In this study, we aimed to define the contribution of JHDM1B expression to the features of breast cancer, a tumor type whose behavior is related to the rate of ribosome biogenesis. We show that, in breast cancer-derived cell lines, the increase in rRNA transcription that follows JHDM1B knock-down is mirrored by an augmented cell proliferation only in p53 compromised cells, while p53 competent cells undergo cellular senescence and death. The latter effect appears to be mediated by a p38-dependent phosphorylation of p53, inducing the expression of p15(Ink4b) and p21(Waf1). In breast cancers, lower JHDM1B expression correlates with an increased size of specifically stained nucleolar organized regions, a morphological parameter directly related to the rate of ribosome biogenesis and with a poorer prognosis. In addition, in tumors lacking the controller function of p53, a lower expression of JHDM1B is associated with an increased tumor size at diagnosis. Altogether, our data indicate that epigenetic activation of rDNA genes induced by JHDM1B depletion is associated with a p53-dependent growth arrest, but may promote cancer cell growth when p53 is lacking.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Western Blotting , Neoplasias de la Mama/mortalidad , Senescencia Celular , Proteínas F-Box/antagonistas & inhibidores , Proteínas F-Box/genética , Femenino , Humanos , Técnicas para Inmunoenzimas , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , ARN Mensajero/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
10.
Nucleic Acids Res ; 41(17): 8308-18, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821664

RESUMEN

Dyskerin is a nucleolar protein encoded by the DKC1 gene that (i) stabilizes the RNA component of the telomerase complex, and (ii) drives the site-specific pseudouridilation of rRNA. It is known that the partial lack of dyskerin function causes a defect in the translation of a subgroup of mRNAs containing internal ribosome entry site (IRES) elements such as those encoding for the tumor suppressors p27 and p53. In this study, we aimed to analyze what is the effect of the lack of dyskerin on the IRES-mediated translation of mRNAs encoding for vascular endothelial growth factor (VEGF). We transiently reduced dyskerin expression and measured the levels of the IRES-mediated translation of the mRNA encoding for VEGF in vitro in transformed and primary cells. We demonstrated a significant increase in the VEGF IRES-mediated translation after dyskerin knock-down. This translational modulation induces an increase in VEGF production in the absence of a significant upregulation in VEGF mRNA levels. The analysis of a list of viral and cellular IRESs indicated that dyskerin depletion can differentially affect IRES-mediated translation. These results indicate for the first time that dyskerin inhibition can upregulate the IRES translation initiation of specific mRNAs.


Asunto(s)
Regiones no Traducidas 5' , Proteínas de Ciclo Celular/fisiología , Proteínas Nucleares/fisiología , Iniciación de la Cadena Peptídica Traduccional , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Interferencia de ARN , ARN Mensajero/química , ARN Viral/química , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/biosíntesis
11.
BMC Cancer ; 14: 361, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24884608

RESUMEN

BACKGROUND: There is a body of evidence that shows a link between tumorigenesis and ribosome biogenesis. The precursor of mature 18S, 28S and 5.8S ribosomal RNAs is transcribed from the ribosomal DNA gene (rDNA), which exists as 300-400 copies in the human diploid genome. Approximately one half of these copies are epigenetically silenced, but the exact role of epigenetic regulation on ribosome biogenesis is not completely understood. In this study we analyzed the methylation profiles of the rDNA promoter and of the 5' regions of 18S and 28S in breast cancer. METHODS: We analyzed rDNA methylation in 68 breast cancer tissues of which the normal counterpart was partially available (45/68 samples) using the MassARRAY EpiTYPER assay, a sensitive and quantitative method with single base resolution. RESULTS: We found that rDNA locus tended to be hypermethylated in tumor compared to matched normal breast tissues and that the DNA methylation level of several CpG units within the rDNA locus was associated to nuclear grade and to nucleolar size of tumor tissues. In addition we identified a subgroup of samples in which large nucleoli were associated with very limited or absent rDNA hypermethylation in tumor respect to matched normal tissue. CONCLUSIONS: In conclusion, we suggest that rDNA is an important target of epigenetic regulation in breast tumors and that rDNA methylation level is associated to nucleolar size.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma/genética , Metilación de ADN/genética , ADN Ribosómico/genética , Anciano , Neoplasias de la Mama/patología , Carcinoma/patología , Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Islas de CpG/genética , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética
12.
J Immunol ; 188(5): 2380-6, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22287708

RESUMEN

HMGB1 is a chromatin architectural protein that is released by dead or damaged cells at sites of tissue injury. Extracellular HMGB1 functions as a proinflammatory cytokine and chemoattractant for immune effector and progenitor cells. Previously, we have shown that the inhibitor of NF-κB kinase (IKK)ß- and IKKα-dependent NF-κB signaling pathways are simultaneously required for cell migration to HMGB1. The IKKß-dependent canonical pathway is needed to maintain expression of receptor for advanced glycation end products, the ubiquitously expressed receptor for HMGB1, but the target of the IKKα non-canonical pathway was not known. In this study, we show that the IKKα-dependent p52/RelB noncanonical pathway is critical to sustain CXCL12/SDF1 production in order for cells to migrate toward HMGB1. Using both mouse bone marrow-derived macrophages and mouse embryo fibroblasts (MEFs), it was observed that neutralization of CXCL12 by a CXCL12 mAb completely eliminated chemotaxis to HMGB1. In addition, the HMGB1 migration defect of IKKα KO and p52 KO cells could be rescued by adding recombinant CXCL12 to cells. Moreover, p52 KO MEFs stably transduced with a GFP retroviral vector that enforces physiologic expression of CXCL12 also showed near normal migration toward HMGB1. Finally, both AMD3100, a specific antagonist of CXCL12's G protein-coupled receptor CXCR4, and an anti-CXCR4 Ab blocked HMGB1 chemotactic responses. These results indicate that HMGB1-CXCL12 interplay drives cell migration toward HMGB1 by engaging receptors of both chemoattractants. This novel requirement for a second receptor-ligand pair enhances our understanding of the molecular mechanisms regulating HMGB1-dependent cell recruitment to sites of tissue injury.


Asunto(s)
Comunicación Autocrina/inmunología , Movimiento Celular/inmunología , Quimiocina CXCL12/biosíntesis , Proteína HMGB1/fisiología , Quinasa I-kappa B/fisiología , Subunidad p52 de NF-kappa B/fisiología , Transducción de Señal/inmunología , Factor de Transcripción ReIB/fisiología , Animales , Transformación Celular Neoplásica , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/fisiología , Quinasa I-kappa B/biosíntesis , Quinasa I-kappa B/deficiencia , Ratones , Ratones Noqueados , Ratones Transgénicos , Subunidad p52 de NF-kappa B/biosíntesis , Subunidad p52 de NF-kappa B/deficiencia , Factor de Transcripción ReIB/biosíntesis , Células Tumorales Cultivadas
13.
J Immunol ; 184(8): 4497-509, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20231695

RESUMEN

Inhibitor of NF-kappaB kinases beta (IKKbeta) and alpha (IKKalpha) activate distinct NF-kappaB signaling modules. The IKKbeta/canonical NF-kappaB pathway rapidly responds to stress-like conditions, whereas the IKKalpha/noncanonical pathway controls adaptive immunity. Moreover, IKKalpha can attenuate IKKbeta-initiated inflammatory responses. High mobility group box 1 (HMGB1), a chromatin protein, is an extracellular signal of tissue damage-attracting cells in inflammation, tissue regeneration, and scar formation. We show that IKKalpha and IKKbeta are each critically important for HMGB1-elicited chemotaxis of fibroblasts, macrophages, and neutrophils in vitro and neutrophils in vivo. By time-lapse microscopy we dissected different parameters of the HMGB1 migration response and found that IKKalpha and IKKbeta are each essential to polarize cells toward HMGB1 and that each kinase also differentially affects cellular velocity in a time-dependent manner. In addition, HMGB1 modestly induces noncanonical IKKalpha-dependent p52 nuclear translocation and p52/RelB target gene expression. Akin to IKKalpha and IKKbeta, p52 and RelB are also required for HMGB1 chemotaxis, and p52 is essential for cellular orientation toward an HMGB1 gradient. RAGE, a ubiquitously expressed HMGB1 receptor, is required for HMGB1 chemotaxis. Moreover, IKKbeta, but not IKKalpha, is required for HMGB1 to induce RAGE mRNA, suggesting that RAGE is at least one IKKbeta target involved in HMGB1 migration responses, and in accord with these results enforced RAGE expression rescues the HMGB1 migration defect of IKKbeta, but not IKKalpha, null cells. Thus, proinflammatory HMGB1 chemotactic responses mechanistically require the differential collaboration of both IKK-dependent NF-kappaB signaling pathways.


Asunto(s)
Quimiotaxis/inmunología , Proteína HMGB1/fisiología , Quinasa I-kappa B/fisiología , Animales , Células Cultivadas , Quimiotaxis/genética , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/inmunología , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Macrófagos/citología , Macrófagos/enzimología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Neutrófilos/citología , Neutrófilos/enzimología , Neutrófilos/inmunología , Proteínas Recombinantes/farmacología , Transducción de Señal/genética , Transducción de Señal/inmunología
14.
Eng Life Sci ; 22(2): 100-114, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35140557

RESUMEN

Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10-R98S). Our data support that RPL10-R98S enhances translation levels and fidelity and reduces proteasomal activity in lymphoid Ba/F3 and Jurkat cell models. In HEK293T cells cultured in chemically defined medium, knock-in of RPL10-R98S was associated with a 1.7- to 2.5-fold increased production of four transiently expressed recombinant proteins and 1.7-fold for one out of two stably expressed proteins. In CHO-S cells, eGFP reached a 2-fold increased expression under stable but not transient conditions, but there was no production benefit for monoclonal antibodies. The RPL10-R98S associated production gain thus depends on culture conditions, cell type, and the nature of the expressed protein. Our study demonstrates the potential for using a ribosomal protein mutation for pharmaceutical protein production gains, and further research on how various factors influence RPL10-R98S phenotypes can maximize its exploitability for the mammalian protein production industry.

15.
Front Genet ; 13: 1058468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36482893

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a subtype of ALL involving the malignant expansion of T-cell progenitors. It is driven by a number of different possible genetic lesions, including mutations in genes encoding for ribosomal proteins (RPs). These are structural constituents of ribosomes, ubiquitous effectors of protein synthesis. Albeit the R98S mutation in RPL10, recurring with a higher frequency among RP mutations, has been extensively studied, less is known about the contribution of mutations occurring in other RPs. Alterations affecting translational machinery may not be well tolerated by cells, and there may be a selective pressure that determines the emergence of mutations with a compensatory effect. To explore this hypothesis, we sequenced the exomes of a cohort of 37 pediatric patients affected by T-ALL, and analyzed them to explore the co-occurrence of mutations in genes involved in ribosome biogenesis (including RPs) and translational control, and in known T-ALL driver genes. We found that some of the mutations in these sub-classes of genes tend to cluster together in different patients, indicating that their co-occurrence may confer some kind of advantage to leukemia cells. In addition, our sequencing highlighted the presence of a novel mutation in RPL10, namely the Q123R, which we found associated with a defect in protein synthesis. Our findings indicate that genetic alterations involving ribosome biogenesis and translational control should be carefully considered in the context of precision medicine in T-ALL.

16.
Genome Biol ; 23(1): 177, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996163

RESUMEN

BACKGROUND: Dyskerin is a nuclear protein involved in H/ACA box snoRNA-guided uridine modification of RNA. In humans, its defective function is associated with cancer development and induces specific post-transcriptional alterations of gene expression. In this study, we seek to unbiasedly identify mRNAs regulated by dyskerin in human breast cancer-derived cells. RESULTS: We find that dyskerin depletion affects the expression and the association with polysomes of selected mRNA isoforms characterized by the retention of H/ACA box snoRNA-containing introns. These snoRNA retaining transcripts (snoRTs) are bound by dyskerin in the cytoplasm in the form of shorter 3' snoRT fragments. We then characterize the whole cytoplasmic dyskerin RNA interactome and find both H/ACA box snoRTs and protein-coding transcripts which may be targeted by the snoRTs' guide properties. Since a fraction of these protein-coding transcripts is involved in the nuclear hormone receptor binding, we test to see if this specific activity is affected by dyskerin. Obtained results indicate that dyskerin dysregulation may alter the dependence on nuclear hormone receptor ligands in breast cancer cells. These results are paralleled by consistent observations on the outcome of primary breast cancer patients stratified according to their tumor hormonal status. Accordingly, experiments in nude mice show that the reduction of dyskerin levels in estrogen-dependent cells favors xenograft development in the absence of estrogen supplementation. CONCLUSIONS: Our work suggests a cytoplasmic function for dyskerin which could affect mRNA post-transcriptional networks relevant for nuclear hormone receptor functions.


Asunto(s)
Neoplasias de la Mama , Proteínas de Ciclo Celular , Proteínas Nucleares , ARN Nucleolar Pequeño , Receptores Citoplasmáticos y Nucleares , Animales , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citoplasma , Estrógenos , Femenino , Humanos , Ratones , Ratones Desnudos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN , Receptores Citoplasmáticos y Nucleares/metabolismo
17.
Arthritis Rheum ; 62(8): 2370-81, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20506238

RESUMEN

OBJECTIVE: To link matrix metalloproteinase 13 (MMP-13) activity and extracellular matrix (ECM) remodeling to alterations in regulatory factors leading to a disruption in chondrocyte homeostasis. METHODS: MMP-13 expression was ablated in primary human chondrocytes by stable retrotransduction of short hairpin RNA. The effects of MMP-13 knockdown on key regulators of chondrocyte differentiation (SOX9, runt-related transcription factor 2 [RUNX-2], and beta-catenin) and angiogenesis (vascular endothelial growth factor [VEGF]) were scored at the protein level (by immunohistochemical or Western blot analysis) and RNA level (by real-time polymerase chain reaction) in high-density monolayer and micromass cultures under mineralizing conditions. Effects on cellular viability in conjunction with chondrocyte progression toward a hypertrophic-like state were assessed in micromass cultures. Alterations in SOX9 subcellular distribution were assessed using confocal microscopy in micromass cultures and also in osteoarthritic cartilage. RESULTS: Differentiation of control chondrocyte micromasses progressed up to a terminal phase, with calcium deposition in conjunction with reduced cell viability and scant ECM. MMP-13 knockdown impaired ECM remodeling and suppressed differentiation in conjunction with reduced levels of RUNX-2, beta-catenin, and VEGF. MMP-13 levels in vitro and ECM remodeling in vitro and in vivo were linked to changes in SOX9 subcellular localization. SOX9 was largely excluded from the nuclei of chondrocytes with MMP-13-remodeled or -degraded ECM, and exhibited an intranuclear staining pattern in chondrocytes with impaired MMP-13 activity in vitro or with more intact ECM in vivo. CONCLUSION: MMP-13 loss leads to a breakdown in primary human articular chondrocyte differentiation by altering the expression of multiple regulatory factors.


Asunto(s)
Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Western Blotting , Cartílago Articular/citología , Células Cultivadas , Condrocitos/citología , Condrogénesis/fisiología , Colágeno Tipo II/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Matriz Extracelular/genética , Humanos , Inmunohistoquímica , Metaloproteinasa 13 de la Matriz/genética , Microscopía Confocal , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Estadísticas no Paramétricas , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Cells ; 9(11)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33227977

RESUMEN

Eukaryotic cytoplasmic ribosomes are highly structured macromolecular complexes made up of four different ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs), which play a central role in the decoding of genetic code for the synthesis of new proteins. Over the past 25 years, studies on yeast and human models have made it possible to identify RPL10 (ribosomal protein L10 gene), which is a constituent of the large subunit of the ribosome, as an important player in the final stages of ribosome biogenesis and in ribosome function. Here, we reviewed the literature to give an overview of the role of RPL10 in physiologic and pathologic processes, including inherited disease and cancer.


Asunto(s)
Enfermedades Raras/genética , Proteína Ribosómica L10/metabolismo , Humanos
19.
Cells ; 9(2)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046192

RESUMEN

Small nucleolar RNAs (snoRNAs) are non-coding RNAs involved in RNA modification and processing. Approximately half of the so far identified snoRNA genes map within the intronic regions of host genes, and their expression, as well as the expression of their host genes, is dependent on transcript splicing and maturation. Growing evidence indicates that mutations and/or deregulations that affect snoRNAs, as well as host genes, play a significant role in oncogenesis. Among the possible factors underlying snoRNA/host gene expression deregulation is copy number alteration (CNA). We analyzed the data available in The Cancer Genome Atlas database, relative to CNA and expression of 295 snoRNA/host gene couples in 10 cancer types, to understand whether the genetic or expression alteration of snoRNAs and their matched host genes would have overlapping trends. Our results show that, counterintuitively, copy number and expression alterations of snoRNAs and matched host genes are not necessarily coupled. In addition, some snoRNA/host genes are mutated and overexpressed recurrently in multiple cancer types. Our findings suggest that the differential contribution to cancer development of both snoRNAs and host genes should always be considered, and that snoRNAs and their host genes may contribute to cancer development in conjunction or independently.


Asunto(s)
Genes Relacionados con las Neoplasias , Intrones/genética , Neoplasias/genética , ARN Nucleolar Pequeño/genética , Variaciones en el Número de Copia de ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos
20.
Histol Histopathol ; 35(10): 1181-1187, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32901907

RESUMEN

Ribosome biogenesis is a fine-tuned cellular process and its deregulation is linked to cancer progression: tumors characterized by an intense ribosome biogenesis often display a more aggressive behavior. Ribosomal RNA (rRNA) synthesis is controlled at several levels, the higher one being the epigenetic regulation of the condensation of chromatin portions containing rRNA genes. KDM2A and KDM2B (Lysine (K)-specific demethylase 2A / B) are histone demethylases modulating the accessibility of ribosomal genes, thereby regulating their transcription. Both enzymes are able to demethylate lysins at relevant sites (e.g. K4, K36) on histone H3. We previously demonstrated that KDM2B is one of the factors regulating ribosome biogenesis in human breast cancer. In this study we aimed to define the combined contribution of KDM2A and KDM2B to breast cancer outcome. KDM2A and KDM2B mRNA levels, nucleolar area as a marker of ribosome biogenesis, and patients' prognosis were retrospectively assessed in a series of primary breast carcinomas. We observed that tumors characterized by reduced levels of both KDM2A and KDM2B displayed a particularly aggressive clinical behavior and increased nucleolar size. Our results suggest that KDM2A and KDM2B may cooperate in regulating ribosome biogenesis thus influencing the biological behavior and clinical outcome of human breast cancers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , Carcinoma Lobular/enzimología , Nucléolo Celular/enzimología , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/genética , Carcinoma Lobular/patología , Nucléolo Celular/genética , Nucléolo Celular/patología , Proteínas F-Box/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Pronóstico , Estudios Retrospectivos , Ribosomas/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA