Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am Nat ; 203(6): 644-654, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781523

RESUMEN

AbstractWe live in a time of accelerated biological extinctions that has the potential to mirror past mass extinction events. However, the rarity of mass extinctions and the restructuring of diversity they cause complicate direct comparisons between the current extinction crisis and earlier events. Among animals, turtles (Testudinata) are one of few groups that have both a rich fossil record and sufficiently stable ecological and functional roles to enable meaningful comparisons between the end-Cretaceous mass extinction (∼66 Ma) and the ongoing wave of extinctions. Here we analyze the fossil record of the entire turtle clade and identify two peaks in extinction rates over their evolutionary history. The first coincides with the Cretaceous-Paleogene transition, reflecting patterns previously reported for other taxa. The second major extinction event started in the Pliocene and continues until now. This peak is detectable only for terrestrial turtles and started much earlier in Africa and Eurasia than elsewhere. On the basis of the timing, geography, and functional group of this extinction event, we postulate a link to co-occurring hominins rather than climate change as the cause. These results lend further support to the view that negative biodiversity impacts were already incurred by our ancestors and related lineages and demonstrate the severity of this continued impact through human activities.


Asunto(s)
Evolución Biológica , Extinción Biológica , Fósiles , Hominidae , Tortugas , Animales , Fósiles/anatomía & histología , Hominidae/anatomía & histología
2.
Proc Biol Sci ; 289(1981): 20220841, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35975445

RESUMEN

Developmental pathways encompass transcription factors and cis-regulatory elements that interact as transcription factor-regulatory element (TF-RE) units. Independent origins of similar phenotypes likely involve changes in different parts of these units, a hypothesis promisingly tested addressing the evolution of the rib-associated lumbar (RAL) morphotype that characterizes emblematic animals such as snakes and elephants. Previous investigation in these lineages identified a polymorphism in the Homology region 1 [H1] enhancer of the Myogenic factor-5 [Myf5], which interacts with HOX10 proteins to modulate rib development. Here we address the evolution of TF-RE units focusing on independent origins of RAL morphotypes. We compiled an extensive database for H1-Myf5 and HOX10 sequences with two goals: (i) evaluate if the enhancer polymorphism is present in amphibians exhibiting the RAL morphotype and (ii) test a hypothesis of enhanced evolutionary flexibility mediated by TF-RE units, according to which independent origins of the RAL morphotype might involve changes in either component of the interaction unit. We identified the H1-Myf5 polymorphism in lineages that diverged around 340 Ma, including Lissamphibia. Independent origins of the RAL morphotype in Tetrapoda involved sequence variation in either component of the TF-RE unit, confirming that different changes may similarly affect the phenotypic outcome of a given developmental pathway.


Asunto(s)
Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción , Anfibios/metabolismo , Animales , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Serpientes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Mol Phylogenet Evol ; 113: 59-66, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28501611

RESUMEN

Despite their complex evolutionary history and the rich fossil record, the higher level phylogeny and historical biogeography of living turtles have not been investigated in a comprehensive and statistical framework. To tackle these issues, we assembled a large molecular dataset, maximizing both taxonomic and gene sampling. As different models provide alternative biogeographical scenarios, we have explicitly tested such hypotheses in order to reconstruct a robust biogeographical history of Testudines. We scanned publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, which accounts for all living genera and 85% of their extant species diversity. Phylogenetic relationships and species divergence times were estimated using a thorough evaluation of fossil information as calibration priors. We then carried out the analysis of historical biogeography of Testudines in a fully statistical framework. Our study recovered the first large-scale phylogeny of turtles with well-supported relationships following the topology proposed by phylogenomic works. Our dating result consistently indicated that the origin of the main clades, Pleurodira and Cryptodira, occurred in the early Jurassic. The phylogenetic and historical biogeographical inferences permitted us to clarify how geological events affected the evolutionary dynamics of crown turtles. For instance, our analyses support the hypothesis that the breakup of Pangaea would have driven the divergence between the cryptodiran and pleurodiran lineages. The reticulated pattern in the ancestral distribution of the cryptodiran lineage suggests a complex biogeographic history for the clade, which was supposedly related to the complex paleogeographic history of Laurasia. On the other hand, the biogeographical history of Pleurodira indicated a tight correlation with the paleogeography of the Gondwanan landmasses.


Asunto(s)
Filogenia , Filogeografía , Tortugas/clasificación , Animales , Biodiversidad , Calibración , Fósiles , Factores de Tiempo
4.
Mol Phylogenet Evol ; 116: 108-119, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28804036

RESUMEN

Recent hypotheses to explain tropical diversity involves the Neogene and Quaternary geoclimatic dynamics, but the absence of unambiguous data permitting the choice between alternative hypotheses makes a general theory for the origin of tropical biodiversity far to be achieved. The occurrence of Chironius snakes in well-defined biogeographical regions led us to adopt Chironius as a model to unveil patterns of vertebrate diversification in the Neotropics. Here, we used molecular markers and records on geographic distribution to investigate Chironius evolution and, subsequently, providing hints on diversification in the Neotropics. To avoid analyzing nominal species that do not constitute exclusive evolutionary lineages, we firstly conducted a species delimitation study prior to carrying out the species distribution modeling analysis. We generated 161 sequences of 12S, 16S, c-mos and rag2 for 15 species and 50 specimens, and included additional data from GenBank yielding a matrix of 137 terminals, and performed the following evolutionary analyses: inference of a concatenated gene tree, estimation of gene divergence times, inference of the coalescent-based phylogeny of Chironius, estimation of effective population sizes and modeling potential distribution of species across the last millennia. We tested for species boundaries within Chironius by implementing a coalescent-based Bayesian species delimitation approach. Our analyses supported the monophyly of Chironius, although our findings underscored cryptic candidate species in C. flavolineatus and C. exoletus. The inferred timetree suggested that Chironius snakes have evolved in the early Miocene (ca. 20.2Mya) and began to diversify from the late Miocene to the early Pliocene, values that are much older than previously reported. Following genetic divergence of virtually all extant Chironius species investigated, the effective sizes of the populations have expanded when compared to their MRCAs. The evolutionary and SDM data from C. brazili and C. diamantina provided additional evidence of the origin of species in the Neotropics. We argue that temperature, instead of altitude, has been the major driving factor in the evolution of both species, and thus we present a case for the consequences of global warming.


Asunto(s)
Biodiversidad , Evolución Biológica , Colubridae/clasificación , Clima Tropical , Animales , Teorema de Bayes , Brasil , Colubridae/genética , Geografía , Filogenia , Dinámica Poblacional , Especificidad de la Especie , Factores de Tiempo
5.
Ecol Evol ; 8(14): 6965-6971, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30073059

RESUMEN

Interest in methods that estimate speciation and extinction rates from molecular phylogenies has increased over the last decade. The application of such methods requires reliable estimates of tree topology and node ages, which are frequently obtained using standard phylogenetic inference combining concatenated loci and molecular dating. However, this practice disregards population-level processes that generate gene tree/species tree discordance. We evaluated the impact of employing concatenation and coalescent-based phylogeny inference in recovering the correct macroevolutionary regime using simulated data based on the well-established diversification rate shift of delphinids in Cetacea. We found that under scenarios of strong incomplete lineage sorting, macroevolutionary analysis of phylogenies inferred by concatenating loci failed to recover the delphinid diversification shift, while the coalescent-based tree consistently retrieved the correct rate regime. We suggest that ignoring microevolutionary processes reduces the power of methods that estimate macroevolutionary regimes from molecular data.

6.
Ecol Evol ; 8(2): 1206-1216, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375791

RESUMEN

Multispecies coalescent (MSC) theory assumes that gene trees inferred from individual loci are independent trials of the MSC process. As genes might be physically close in syntenic associations spanning along chromosome regions, these assumptions might be flawed in evolutionary lineages with substantial karyotypic shuffling. Neotropical primates (NP) represent an ideal case for assessing the performance of MSC methods in such scenarios because chromosome diploid number varies significantly in this lineage. To this end, we investigated the effect of sequence length on the theoretical expectations of MSC model, as well as the results of coalescent-based tree inference methods. This was carried out by comparing NP with hominids, a lineage in which chromosome macrostructure has been stable for at least 15 million years. We found that departure from the MSC model in Neotropical primates decreased with smaller sequence fragments, where sites sharing the same evolutionary history were more frequently found than in longer fragments. This scenario probably resulted from extensive karyotypic rearrangement occurring during the radiation of NP, contrary to the comparatively stable chromosome evolution in hominids.

7.
Zoology (Jena) ; 118(1): 27-33, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25456976

RESUMEN

Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types.


Asunto(s)
Lagartos/anatomía & histología , Lagartos/fisiología , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Animales , Miembro Posterior/citología , Miembro Posterior/fisiología , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA