Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38870082

RESUMEN

OBJECTIVES: Primaquine is essential for the radical cure of Plasmodium vivax malaria and must be metabolized into its bioactive metabolites. Accordingly, polymorphisms in primaquine-metabolizing enzymes can impact the treatment efficacy. This pioneering study explores the influence of monoamine oxidase-A (MAO-A) on primaquine metabolism and its impact on malaria relapses. METHODS: Samples from 205 patients with P. vivax malaria were retrospectively analysed by genotyping polymorphisms in MAO-A and cytochrome P450 2D6 (CYP2D6) genes. We measured the primaquine and carboxyprimaquine blood levels in 100 subjects for whom blood samples were available on the third day of treatment. We also examined the relationship between the enzyme variants and P. vivax malaria relapses in a group of subjects with well-documented relapses. RESULTS: The median carboxyprimaquine level was significantly reduced in individuals carrying low-expression MAO-A alleles plus impaired CYP2D6. In addition, this group experienced significantly more P. vivax relapses. The low-expression MAO-A status was not associated with malaria relapses when CYP2D6 had normal activity. This suggests that the putative carboxyprimaquine contribution is irrelevant when the CYP2D6 pathway is fully active. CONCLUSIONS: We found evidence that the low-expression MAO-A variants can potentiate the negative impact of impaired CYP2D6 activity, resulting in lower levels of carboxyprimaquine metabolite and multiple relapses. The findings support the hypothesis that carboxyprimaquine may be further metabolized through CYP-mediated pathways generating bioactive metabolites that act against the parasite.

2.
BMC Infect Dis ; 23(1): 499, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507666

RESUMEN

BACKGROUND: Chikungunya is associated with high morbidity and the natural history of symptomatic infection has been divided into three phases (acute, post-acute, and chronic) according to the duration of musculoskeletal symptoms. Although this classification has been designed to help guide therapeutic decisions, it does not encompass the complexity of the clinical expression of the disease and does not assist in the evaluation of the prognosis of severity nor chronic disease. Thus, the current challenge is to identify and diagnose musculoskeletal disorders and to provide the optimal treatment in order to prevent perpetuation or progression to a potentially destructive disease course. METHODS: The study is the first product of the Clinical and Applied Research Network in Chikungunya (REPLICK). This is a prospective, outpatient department-based, multicenter cohort study in Brazil. Four work packages were defined: i. Clinical research; ii) Translational Science - comprising immunology and virology streams; iii) Epidemiology and Economics; iv) Therapeutic Response and clinical trials design. Scheduled appointments on days 21 (D21) ± 7 after enrollment, D90 ± 15, D120 ± 30, D180 ± 30; D360 ± 30; D720 ± 60, and D1080 ± 60 days. On these visits a panel of blood tests are collected in addition to the clinical report forms to obtain data on socio-demographic, medical history, physical examination and questionnaires devoted to the evaluation of musculoskeletal manifestations and overall health are performed. Participants are asked to consent for their specimens to be maintained in a biobank. Aliquots of blood, serum, saliva, PAXgene, and when clinically indicated to be examined, synovial fluid, are stored at -80° C. The study protocol was submitted and approved to the National IRB and local IRB at each study site. DISCUSSION: Standardized and harmonized patient cohorts are needed to provide better estimates of chronic arthralgia development, the clinical spectra of acute and chronic disease and investigation of associated risk factors. This study is the largest evaluation of the long-term sequelae of individuals infected with CHIKV in the Brazilian population focusing on musculoskeletal manifestations, mental health, quality of life, and chronic pain. This information will both define disease burden and costs associated with CHIKV infection, and better inform therapeutic guidelines.


Asunto(s)
Fiebre Chikungunya , Humanos , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/terapia , Estudios de Cohortes , Estudios Prospectivos , Calidad de Vida , Enfermedad Crónica , Estudios Multicéntricos como Asunto
3.
PLoS Pathog ; 13(7): e1006484, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28700710

RESUMEN

Although the importance of humoral immunity to malaria has been established, factors that control antibody production are poorly understood. Follicular helper T cells (Tfh cells) are pivotal for generating high-affinity, long-lived antibody responses. While it has been proposed that expansion of antigen-specific Tfh cells, interleukin (IL) 21 production and robust germinal center formation are associated with protection against malaria in mice, whether Tfh cells are found during Plasmodium vivax (P. vivax) infection and if they play a role during disease remains unknown. Our goal was to define the role of Tfh cells during P. vivax malaria. We demonstrate that P. vivax infection triggers IL-21 production and an increase in Tfh cells (PD-1+ICOS+CXCR5+CD45RO+CD4+CD3+). As expected, FACS-sorted Tfh cells, the primary source of IL-21, induced immunoglobulin production by purified naïve B cells. Furthermore, we found that P. vivax infection alters the B cell compartment and these alterations were dependent on the number of previous infections. First exposure leads to increased proportions of activated and atypical memory B cells and decreased frequencies of classical memory B cells, whereas patients that experienced multiple episodes displayed lower proportions of atypical B cells and higher frequencies of classical memory B cells. Despite the limited sample size, but consistent with the latter finding, the data suggest that patients who had more than five infections harbored more Tfh cells and produce more specific antibodies. P. vivax infection triggers IL-21 production by Tfh that impact B cell responses in humans.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/inmunología , Malaria Vivax/inmunología , Plasmodium vivax/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Adulto , Animales , Femenino , Humanos , Activación de Linfocitos , Malaria Vivax/parasitología , Masculino , Ratones , Persona de Mediana Edad , Plasmodium vivax/inmunología , Adulto Joven
4.
Malar J ; 18(1): 154, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31039781

RESUMEN

BACKGROUND: The unexpected high proportion of submicroscopic malaria infections in areas with low transmission intensity challenges the control and elimination of malaria in the Americas. The current PCR-based assays present limitations as most protocols still rely on amplification of few-copies target gene. Here, the hypothesis was that amplification of different plasmodial targets-ribosomal (18S rRNA) and non-ribosomal multi-copy sequences (Pvr47 for Plasmodium vivax and Pfr364 for Plasmodium falciparum)-could increase the chances of detecting submicroscopic malaria infection. METHODS: A non-ribosomal real-time PCR assay targeting Pvr47/Pfr364 (NR-qPCR) was established and compared with three additional PCR protocols, two of them based on 18S rRNA gene amplification (Nested-PCR and R-qPCR) and one based on Pvr47/Pfr364 targets (NR-cPCR). The limit of detection of each PCR protocol, at single and artificial mixed P. vivax/P. falciparum infections, was determined by end-point titration curves. Field samples from clinical (n = 110) and subclinical (n = 324) malaria infections were used to evaluate the impact of using multiple molecular targets to detect malaria infections. RESULTS: The results demonstrated that an association of ribosomal and non-ribosomal targets did not increase sensitivity to detect submicroscopic malaria infections. Despite of that, artificial mixed-malaria infections demonstrated that the NR-qPCR was the most sensitive protocol to detect low-levels of P. vivax/P. falciparum co-infections. Field studies confirmed that submicroscopic malaria represented a large proportion (up to 77%) of infections among asymptomatic Amazonian residents, with a high proportion of infections (~ 20%) identified only by the NR-qPCR. CONCLUSIONS: This study presents a new species-specific non-ribosomal PCR assay with potential to identify low-density P. vivax and P. falciparum infections. As the majority of subclinical infections was caused by P. vivax, the commonest form of malaria in the Amazon area, future studies should investigate the potential of Pvr47/Pfr364 to detect mixed-malaria infections in the field.


Asunto(s)
Coinfección/diagnóstico , Malaria/diagnóstico , ARN Ribosómico 18S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto , Infecciones Asintomáticas , Brasil , Coinfección/parasitología , Femenino , Humanos , Límite de Detección , Malaria/sangre , Malaria Falciparum/sangre , Malaria Falciparum/diagnóstico , Malaria Vivax/sangre , Malaria Vivax/diagnóstico , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Adulto Joven
5.
Malar J ; 16(1): 42, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28118834

RESUMEN

BACKGROUND: The clinical outcome of malaria depends on the delicate balance between pro-inflammatory and immunomodulatory cytokine responses triggered during infection. Despite the numerous reports on characterization of plasma levels of cytokines/chemokines, there is no consensus on the profile of these mediators during blood stage malaria. The identification of acute phase biomarkers might contribute to a better understanding of the disease, allowing the use of more effective therapeutic approaches to prevent the progression towards severe disease. In the present study, the plasma levels of cytokines and chemokines and their association with parasitaemia and number of previous malaria episodes were evaluated in Plasmodium vivax-infected patients during acute and convalescence phase, as well as in healthy donors. METHODS: Samples of plasma were obtained from peripheral blood samples from four different groups: P. vivax-infected, P. vivax-treated, endemic control and malaria-naïve control. The cytokine (IL-6, IL-10, IL-17, IL-27, TGF-ß, IFN-γ and TNF) and chemokine (MCP-1/CCL2, IP-10/CXCL10 and RANTES/CCL5) plasma levels were measured by CBA or ELISA. The network analysis was performed using Spearman correlation coefficient. RESULTS: Plasmodium vivax infection induced a pro-inflammatory response driven by IL-6 and IL-17 associated with an immunomodulatory profile mediated by IL-10 and TGF-ß. In addition, a reduction was observed of IFN-γ plasma levels in P. vivax group. A lower level of IL-27 was observed in endemic control group in comparison to malaria-naïve control group. No significant results were found for IL-12p40 and TNF. It was also observed that P. vivax infection promoted higher levels of MCP-1/CCL2 and IP-10/CXCL10 and lower levels of RANTES/CCL5. The plasma level of IL-10 was elevated in patients with high parasitaemia and with more than five previous malaria episodes. Furthermore, association profile between cytokine and chemokine levels were observed by correlation network analysis indicating signature patterns associated with different parasitaemia levels. CONCLUSIONS: The P. vivax infection triggers a balanced immune response mediated by IL-6 and MCP-1/CCL2, which is modulated by IL-10. In addition, the results indicated that IL-10 plasma levels are influenced by parasitaemia and number of previous malaria episodes.


Asunto(s)
Citocinas/sangre , Malaria Vivax/inmunología , Malaria Vivax/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Inmunoensayo , Masculino , Persona de Mediana Edad , Plasma/química , Adulto Joven
6.
BMC Infect Dis ; 15: 35, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25636730

RESUMEN

BACKGROUND: For a long time, the role of CD8(+) T cells in blood-stage malaria was not considered important because erythrocytes do not express major histocompatibility complex (MHC) class I proteins. While recent evidences suggest that CD8(+) T cells may play an important role during the erythrocytic phase of infection by eliminating parasites, CD8(+) T cells might also contribute to modulate the host response through production of regulatory cytokines. Thus, the role of CD8(+) T cells during blood-stage malaria is unclear. Here, we report the phenotypic profiling of CD8(+) T cells subsets from patients with uncomplicated symptomatic P. vivax malaria. METHODS: Blood samples were collected from 20 Plasmodium vivax-infected individuals and 12 healthy individuals. Immunophenotyping was conducted by flow cytometry. Plasma levels of IFN-γ, TNF-α and IL-10 were determined by ELISA/CBA. Unpaired t-test or Mann-Whitney test was used depending on the data distribution. RESULTS: P. vivax-infected subjects had lower percentages and absolute numbers of CD8(+)CD45RA(+) and CD8(+)CD45RO(+) T cells when compared to uninfected individuals (p ≤ 0.0002). A significantly lower absolute number of circulating CD8(+)CD45(+)CCR7(+) cells (p = 0.002) was observed in P. vivax-infected individuals indicating that infection reduces the number of central memory T cells. Cytokine expression was significantly reduced in the naïve T cells from infected individuals compared with negative controls, as shown by lower numbers of IFN-γ(+) (p = 0.001), TNF-α(+) (p < 0.0001) and IL-10(+) (p < 0.0001) CD8(+) T cells. Despite the reduction in the number of CD8(+) memory T cells producing IFN-γ (p < 0.0001), P. vivax-infected individuals demonstrated a significant increase in memory CD8(+)TNF-α(+) (p = 0.016) and CD8(+)IL-10(+) (p = 0.004) cells. Positive correlations were observed between absolute numbers of CD8(+)IL-10(+) and numbers of CD8(+)IFN-γ(+) (p < 0.001) and CD8(+)TNF-α(+) T cells (p ≤ 0.0001). Finally, an increase in the plasma levels of TNF-α (p = 0.017) and IL-10 (p = 0.006) and a decrease in the IFN-γ plasma level (p <0.0001) were observed in the P. vivax-infected individuals. CONCLUSIONS: P. vivax infection reduces the numbers of different subsets of CD8(+) T cells, particularly the memory cells, during blood-stage of infection and enhances the number of CD8(+) memory T cells expressing IL-10, which positively correlates with the number of cells expressing TNF-α and IFN-γ.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Malaria Vivax/inmunología , Plasmodium vivax/inmunología , Adulto , Anciano , Recuento de Células Sanguíneas , Estudios de Casos y Controles , Femenino , Citometría de Flujo , Humanos , Malaria Vivax/sangre , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
7.
Mem Inst Oswaldo Cruz ; 108(1): 98-105, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23440122

RESUMEN

The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Moléculas de Adhesión Celular/inmunología , Malaria Falciparum/inmunología , Malaria Vivax/inmunología , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Animales , Brasil , Portador Sano , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/parasitología , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Ratones , Ratones Endogámicos BALB C
8.
Front Immunol ; 14: 1193256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545509

RESUMEN

Background: Plasmodium spp. infection triggers the production of inflammatory cytokines that are essential for parasite control, and conversely responsible for symptoms of malaria. Monocytes play a role in host defense against Plasmodium vivax infection and represent the main source of inflammatory cytokines and reactive oxygen species. The anti-inflammatory cytokine IL-10 is a key regulator preventing exacerbated inflammatory responses. Studies suggested that different clinical presentations of malaria are strongly associated with an imbalance in the production of inflammatory and anti-inflammatory cytokines. Methods: A convenience sampling of peripheral blood mononuclear cells from Plasmodium vivax-infected patients and healthy donors were tested for the characterization of cytokine and adenosine production and the expression of ectonucleotidases and purinergic receptors. Results: Here we show that despite a strong inflammatory response, monocytes also bear a modulatory role during malaria. High levels of IL-10 are produced during P. vivax infection and its production can be triggered in monocytes by P. vivax-infected reticulocytes. Monocytes express high levels of ectonucleotidases, indicating their important role in extracellular ATP modulation and consequently in adenosine production. Plasmatic levels of adenosine are not altered in patients experiencing acute malaria; however, their monocyte subsets displayed an increased expression of P1 purinergic receptors. In addition, adenosine decreases Tumor Necrosis Factor production by monocytes, which was partially abolished with the blockage of the A2a receptor. Conclusion: Monocytes have a dual role, attempting to control both the P. vivax infection and the inflammatory response. Purinergic receptor modulators emerge as an untapped approach to ameliorate clinical malaria.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Plasmodium vivax , Interleucina-10 , Leucocitos Mononucleares/metabolismo , Malaria Vivax/parasitología , Citocinas/metabolismo , Inflamación
9.
Lancet Reg Health Am ; 18: 100420, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844008

RESUMEN

Background: Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods: Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings: We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation: Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding: AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).

10.
Front Microbiol ; 13: 882530, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633683

RESUMEN

Malaria is an acute febrile disease caused by a protozoan of the genus Plasmodium. Light microscopy (LM) is the gold standard for the diagnosis of malaria. Despite this method being rapid and inexpensive, it has a low limit of detection, which hampers the identification of low parasitemia infections. By using multicopy targets and highly sensitive molecular techniques, it is possible to change this scenario. In this study, we evaluated the performance of droplet digital PCR (ddPCR) to detect Plasmodium DNA obtained from saliva samples (whole saliva and buccal swab) of 157 individuals exposed to malaria transmission from the Brazilian Amazon region. We used the highly sensitive ddPCR method with non-ribosomal multicopy targets for Plasmodium vivax (Pvr47) and Plasmodium falciparum (Pfr364). There was good concordance between the quantitative real-time PCR (qPCR) results from the saliva and blood, except for mixed-species infections. The sensitivity of qPCR was 93% for blood, 77% for saliva, and 47% for swabs. Parasite DNA was not detected in saliva samples in low-density infections compared with the detection in blood samples. ddPCR showed increased sensitivity for detecting Plasmodium in the blood and swabs (99% in blood, 73% in saliva, and 59% in swabs). Notably, ddPCR detected more mixed infections in the blood (15%), saliva (9%), and swabs (18%) than qPCR. Our data showed that the differences between ddPCR and qPCR were the result of a higher number of P. falciparum infections detected by ddPCR. Overall, there was a moderate correlation between parasite densities estimated by the different methods in the blood. Our findings highlight the possibility of using non-invasive sample collection methods for malaria diagnosis by targeting multicopy sequences combined with highly sensitive molecular methods.

11.
Int J Parasitol Drugs Drug Resist ; 17: 150-155, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34637981

RESUMEN

Human malaria continues to be a public health problem and an important cause of morbidity and mortality in the world. Malaria control is achieved through both individual protection against mosquito bites and drug treatment, which is hampered by the spread of Plasmodium falciparum resistance to most antimalarials, including artemisinin derivatives. One of the key pharmacological strategies for controlling malaria is to block transmission of the parasites to their mosquito vectors. Following this rational, MEFAS, a synthetic hybrid salt derived from artesunate (AS) and mefloquine has been previously reported for its activity against asexual P. falciparum parasites in vitro, in addition to a pronounced reduction in the viability of mature gametocytes. Herein, MEFAS was tested against asexual forms of Plasmodium vivax and for its ability to block malaria transmission in Anopheles darlingi mosquitoes in a membrane feeding assay using P. vivax field isolates. MEFAS demonstrated high potency, with a IC50 of 6.5 nM against asexual forms of P. vivax. At 50 µM, MEFAS completely blocked oocyst formation in mosquitoes, regardless of the oocyst number in the control group. At lower doses, MEFAS reduced oocyst prevalence by greater than 20%. At equivalent doses, AS irregularly reduced oocyst formation and caused only slight inhibition of mosquito infections. These results highlight the potential of MEFAS as a novel transmission-blocking molecule, as well as its high blood schizonticidal activity against P. vivax and P. falciparum field isolates, representing a starting point for further development of a new drug with dual antimalarial activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Antimaláricos/farmacología , Artesunato , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/prevención & control , Mefloquina/farmacología , Plasmodium falciparum , Plasmodium vivax
12.
mBio ; 12(4): e0124721, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311577

RESUMEN

Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Monocitos/metabolismo , Monocitos/patología , Plasmodium vivax/inmunología , Reticulocitos/parasitología , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Anciano , Femenino , Expresión Génica , Glucólisis , Humanos , Malaria Vivax/inmunología , Malaria Vivax/fisiopatología , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Monocitos/citología , Monocitos/inmunología , Fagosomas/inmunología , Fagosomas/parasitología , Plasmodium vivax/genética , Plasmodium vivax/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Adulto Joven
13.
Front Cell Infect Microbiol ; 11: 742681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621693

RESUMEN

Early diagnosis and treatment are fundamental to the control and elimination of malaria. In many endemic areas, routine diagnosis is primarily performed microscopically, although rapid diagnostic tests (RDTs) provide a useful point-of-care tool. Most of the commercially available RDTs detect histidine-rich protein 2 (HRP2) of Plasmodium falciparum in the blood of infected individuals. Nonetheless, parasite isolates lacking the pfhrp2 gene are relatively frequent in some endemic regions, thereby hampering the diagnosis of malaria using HRP2-based RDTs. To track the efficacy of RDTs in areas of the Brazilian Amazon, we assessed pfhrp2 deletions in 132 P. falciparum samples collected from four malaria-endemic states in Brazil. Our findings show low to moderate levels of pfhrp2 deletion in different regions of the Brazilian Amazon. Overall, during the period covered by this study (2002-2020), we found that 10% of the P. falciparum isolates were characterized by a pfhrp2 deletion. Notably, however, the presence of pfhrp2-negative isolates has not been translated into a reduction in RDT efficacy, which in part may be explained by the presence of polyclonal infections. A further important finding was the discrepancy in the proportion of pfhrp2 deletions detected using two assessed protocols (conventional PCR versus nested PCR), which reinforces the need to perform a carefully planned laboratory workflow to assess gene deletion. This is the first study to perform a comprehensive analysis of PfHRP2 sequence diversity in Brazilian isolates of P. falciparum. We identified 10 PfHRP2 sequence patterns, which were found to be exclusive of each of the assessed regions. Despite the small number of PfHRP2 sequences available from South America, we found that the PfHRP2 sequences identified in Brazil and neighboring French Guiana show similar sequence patterns. Our findings highlight the importance of continuously monitoring the occurrence and spread of parasites with pfrhp2 deletions, while also taking into account the limitations of PCR-based testing methods associated with accuracy and the complexity of infections.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Antígenos de Protozoos/genética , Brasil , Pruebas Diagnósticas de Rutina , Eliminación de Gen , Histidina , Humanos , Malaria Falciparum/diagnóstico , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-34407161

RESUMEN

The majority of malaria cases in South America occur in rural areas of the Amazon region. Although these areas have a significant impact on malaria cases, few entomological studies have been carried out there. This study aimed to describe entomological parameters in settlements in Rondonia State, Brazil. Collections of anopheles were carried out using the Protected Human Attraction Technique (PHAT). The risk and the potential for malaria transmission were assessed using the human biting rate (HBR), the sporozoite rate (SR) and the entomological inoculation rate (EIR). The results confirmed that Nyssorhynchus darlingi is the predominant species in the two studied locations. Although settlement in the two study sites has occurred at different times, the species richness found was low, showing that environmental changes caused by anthropological actions have probably favor the adaptation of Ny. darlingi species. From the total of 615 anopheline mosquitoes assessed, seven (1.1%) were positive for Plasmodium sp. infections. The EIR revealed that Ny. darlingi contributes to malaria transmission in both locations, as it was responsible for 0.05 infectious bites in humans at night in the old settlement and 0.02 in the recent occupation. In the two study sites, the biting occurred more frequently at dusk. Nyssorhynchus darlingi was prevalent in areas of recent colonization but, even when present in a low density, this species could maintain the transmission of malaria in the older settlement. The entomological information obtained in this study is important and may aid the selection of vector control actions in these locations.


Asunto(s)
Anopheles , Malaria , Plasmodium , Animales , Brasil , Humanos , Mosquitos Vectores
15.
PLoS Negl Trop Dis ; 15(10): e0009077, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714821

RESUMEN

Individuals with asymptomatic infection due to Plasmodium vivax are posited to be important reservoirs of malaria transmission in endemic regions. Here we studied a cohort of P. vivax malaria patients in a suburban area in the Brazilian Amazon. Overall 1,120 individuals were screened for P. vivax infection and 108 (9.6%) had parasitemia detected by qPCR but not by microscopy. Asymptomatic individuals had higher levels of antibodies against P. vivax and similar hematological and biochemical parameters compared to uninfected controls. Blood from asymptomatic individuals with very low parasitemia transmitted P. vivax to the main local vector, Nyssorhynchus darlingi. Lower mosquito infectivity rates were observed when blood from asymptomatic individuals was used in the membrane feeding assay. While blood from symptomatic patients infected 43.4% (199/458) of the mosquitoes, blood from asymptomatic infected 2.5% (43/1,719). However, several asymptomatic individuals maintained parasitemia for several weeks indicating their potential role as an infectious reservoir. These results suggest that asymptomatic individuals are an important source of malaria parasites and Science and Technology for Vaccines granted by Conselho Nacional de may contribute to the transmission of P. vivax in low-endemicity areas of malaria.


Asunto(s)
Anopheles/parasitología , Malaria Vivax/transmisión , Plasmodium vivax/fisiología , Animales , Anopheles/fisiología , Infecciones Asintomáticas/epidemiología , Sangre/parasitología , Brasil/epidemiología , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Plasmodium vivax/genética , Estaciones del Año
16.
Nat Commun ; 12(1): 3160, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039976

RESUMEN

Despite the high burden of Plasmodium vivax malaria in South Asian countries, the genetic diversity of circulating parasite populations is not well described. Determinants of antimalarial drug susceptibility for P. vivax in the region have not been characterised. Our genomic analysis of global P. vivax (n = 558) establishes South Asian isolates (n = 92) as a distinct subpopulation, which shares ancestry with some East African and South East Asian parasites. Signals of positive selection are linked to drug resistance-associated loci including pvkelch10, pvmrp1, pvdhfr and pvdhps, and two loci linked to P. vivax invasion of reticulocytes, pvrbp1a and pvrbp1b. Significant identity-by-descent was found in extended chromosome regions common to P. vivax from India and Ethiopia, including the pvdbp gene associated with Duffy blood group binding. Our investigation provides new understanding of global P. vivax population structure and genomic diversity, and genetic evidence of recent directional selection in this important human pathogen.


Asunto(s)
Genes Protozoarios , Malaria Vivax/parasitología , Plasmodium vivax/genética , Selección Genética , África Oriental , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Asia , Resistencia a Medicamentos/genética , Sistema del Grupo Sanguíneo Duffy , Sitios Genéticos , Humanos , Malaria Vivax/sangre , Malaria Vivax/tratamiento farmacológico , Filogenia , Filogeografía , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/patogenicidad , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Reticulocitos/parasitología
17.
Viruses ; 12(8)2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823806

RESUMEN

The purpose of the study was to classify, through phylogenetic analyses, the main arboviruses that have been isolated in the metropolitan region of Porto Velho, Rondônia, Brazil. Serum samples from patients with symptoms suggesting arboviruses were collected and tested by One Step RT-qPCR for Zika, Dengue (serotypes 1-4), Chikungunya, Mayaro and Oropouche viruses. Positive samples were amplified by conventional PCR and sequenced utilizing the Sanger method. The obtained sequences were aligned, and an evolutionary analysis was carried out using Bayesian inference. A total of 308 samples were tested. Of this total, 20 had a detectable viral load for Dengue, being detected DENV1 (18/20), co-infection DENV1 and DENV2 (1/20) and DENV4 (1/20). For Dengue serotype 3 and for the CHIKV, ZIKV, MAYV and OROV viruses, no individuals with a detectable viral load were found. A total of 9 of these samples were magnified by conventional PCR for sequencing. Of these, 6 were successfully sequenced and, according to the evolutionary profile, 5 corresponded to serotype DENV-1 genotype V, and 1 to serotype DENV-4 genotype II. In the study, we demonstrate co-circulation of the DENV-1 genotype V and the DENV-4 genotype II. Co-circulation of several DENV serotypes in the same city poses a risk to the population and is correlated with the increase of the most severe forms of the disease. Similarly, co-circulation of genetically distinct DENV and the occurrence of simultaneous infections can affect recombination events and lead to the emergence of more virulent isolates.


Asunto(s)
Infecciones por Arbovirus/virología , Arbovirus/clasificación , Fiebre/virología , Filogenia , Enfermedad Aguda/epidemiología , Infecciones por Arbovirus/epidemiología , Arbovirus/patogenicidad , Brasil/epidemiología , Coinfección/epidemiología , Coinfección/virología , Dengue/epidemiología , Virus del Dengue/genética , Brotes de Enfermedades , Evolución Molecular , Femenino , Fiebre/epidemiología , Genotipo , Humanos , Masculino , ARN Viral/genética , Serogrupo , Carga Viral
18.
Vector Borne Zoonotic Dis ; 20(7): 517-523, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255759

RESUMEN

Although malaria is endemic to the Amazon region, little is known about the susceptibility of potential parasite vectors in Brazil. Assessing the vector susceptibility of Anopheles mosquitoes will increase our understanding of parasite-vector interactions and aid the design of vector control strategies. This study assessed the susceptibility of three Anopheles species to midgut infection by Plasmodium vivax, the predominant malaria species in Rondônia State, Brazil. Blood from P. vivax infected patients was fed to Anopheles aquasalis, Anopheles darlingi, and Anopheles deaneorum mosquitoes using a membrane feeding assay (MFA). Gametocytemia was estimated by microscopic examination of blood smears and oocyst prevalence, and infection intensity was assessed. The presence of oocysts was determined by microscopy, and the infection rates and infection intensity were determined for all species. Data from six MFAs showed that An. darlingi and An. deaneorum exhibited the highest infection rates (97% and 90%, respectively) and developed a similar median number of P. vivax oocysts (142 and 123, respectively), while An. aquasalis exhibited the smallest infection rates (77%) and the median number of oocysts (88). Established laboratory colonies of An. darlingi and An. deaneorum and susceptibility to plasmodial infection would be beneficial for modeling P. vivax vector-parasite interactions in Brazil.


Asunto(s)
Anopheles/clasificación , Anopheles/parasitología , Mosquitos Vectores/clasificación , Mosquitos Vectores/parasitología , Plasmodium vivax/fisiología , Animales , Brasil , Interacciones Huésped-Parásitos
19.
Rev Inst Med Trop Sao Paulo ; 61: e40, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31432989

RESUMEN

Several arboviruses have emerged and/or re-emerged in North, Central and South-American countries. Viruses from some regions of Africa and Asia, such as the Zika and Chikungunya virus have been introduced in new continents causing major public health problems. The aim of this study was to investigate the presence of RNA from Zika, Dengue and Chikungunya viruses in symptomatic patients from Rondonia, where the epidemiological profile is still little known, by one-step real-time RT-PCR. The main clinical signs and symtoms were fever (51.2%), headache (78%), chills (6.1%), pruritus (12.2%), exanthema (20.1%), arthralgia (35.3%), myalgia (26.8%) and retro-orbital pain (19.5%). Serum from 164 symptomatic patients were collected and tested for RNA of Zika, Dengue types 1 to 4 and Chikungunya viruses, in addition to antibodies against Dengue NS1 antigen. Direct microscopy for Malaria was also performed. Only ZIKV RNA was detected in 4.3% of the patients, and in the remaining 95.7% of the patients RNA for Zika, Dengue and Chikungunya viruses were not detected. This finding is intriguing as the region has been endemic for Dengue for a long time and more recently for Chikungunya virus as well. The results indicated that medical and molecular parameters obtained were suitable to describe the first report of symptomatic Zika infections in this region. Furthermore, the low rate of detection, compared to clinical signs and symptoms as the solely diagnosis criteria, suggests that molecular assays for detection of viruses or other pathogens that cause similar symptoms should be used and the corresponding diseases could be included in the compulsory notification list.


Asunto(s)
Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Virus del Dengue/genética , Dengue/epidemiología , Infección por el Virus Zika/epidemiología , Virus Zika/genética , Brasil/epidemiología , Fiebre Chikungunya/diagnóstico , Dengue/diagnóstico , Humanos , Virus ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Infección por el Virus Zika/diagnóstico
20.
Rev Soc Bras Med Trop ; 52: e20190159, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31340377

RESUMEN

INTRODUCTION: The lack of highly-productive Nyssorhynchus darlingi laboratory colonies limits some studies. We report the first well-established laboratory colony of Ny. darlingi in Brazil. METHODS: Mosquitoes were collected from Porto Velho and were reared at the Laboratory of Fiocruz/RO. After induced mating by light stimulation in the F1 to F6, the subsequent generations were free mating. Larvae were reared in distilled water and fed daily until pupation. RESULTS: In 11 generations, the colony produced a high number of pupae after the F5 generation. CONCLUSIONS: These results demonstrate the potential for permanently establishing Ny. darlingi colonies for research purposes in Brazil.


Asunto(s)
Anopheles/crecimiento & desarrollo , Mosquitos Vectores/crecimiento & desarrollo , Animales , Anopheles/fisiología , Brasil , Malaria , Mosquitos Vectores/fisiología , Oviposición , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA