Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Indian J Med Res ; 158(4): 439-446, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006347

RESUMEN

BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii. METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR. RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-ß-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1. INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.


Asunto(s)
Acinetobacter baumannii , Infecciones Bacterianas , Infección Hospitalaria , Humanos , Virulencia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , beta-Lactamasas/genética , Factores de Virulencia/genética , Biopelículas , Infección Hospitalaria/microbiología , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
2.
Parasitology ; 148(9): 1074-1082, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966667

RESUMEN

Cassia angustifolia Vahl. plant is used for many therapeutic purposes, for example, in people with constipation, skin diseases, including helminthic and parasitic infections. In our study, we demonstrated an amoebicidal activity of C. angustifolia extract against Acanthamoeba triangularis trophozoite at a micromolar level. Scanning electron microscopy (SEM) images displayed morphological changes in the Acanthamoeba trophozoite, which included the formation of pores in cell membrane and the membrane rupture. In addition to the amoebicidal activity, effects of the extract on surviving trophozoites were observed, which included cyst formation and vacuolization by a microscope and transcriptional expression of Acanthamoeba autophagy in response to the stress by quantitative polymerase chain reaction. Our data showed that the surviving trophozoites were not transformed into cysts and the trophozoite number with enlarged vacuole was not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of AcATG genes was slightly changed. Interestingly, AcATG16 decreased significantly at 12 h post treatment, which may indicate a transcriptional regulation by the extract or a balance of intracellular signalling pathways in response to the stress, whereas AcATG3 and AcATG8b remained unchanged. Altogether, these data reveal the anti-Acanthamoeba activity of C. angustifolia extract and the autophagic response in the surviving trophozoites under the plant extract pressure, along with data on the formation of cysts. These represent a promising plant for future drug development. However, further isolation and purification of an active compound and cytotoxicity against human cells are needed, including a study on the autophagic response at the protein level.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Amebicidas/farmacología , Genes Protozoarios/efectos de los fármacos , Extractos Vegetales/farmacología , Senna/química , Transcripción Genética/efectos de los fármacos , Acanthamoeba castellanii/genética , Extractos Vegetales/química
3.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360825

RESUMEN

Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood-testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells' toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.


Asunto(s)
Genitales Masculinos/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Óxidos/efectos adversos , Espermatogénesis/efectos de los fármacos , Animales , Humanos , Masculino , Compuestos Orgánicos/efectos adversos , Especies Reactivas de Oxígeno/metabolismo
4.
Korean J Parasitol ; 57(4): 341-357, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31533401

RESUMEN

Acanthamoeba, one of free-living amoebae (FLA), remains a high risk of direct contact with this protozoan parasite which is ubiquitous in nature and man-made environment. This pathogenic FLA can cause sight-threatening amoebic keratitis (AK) and fatal granulomatous amoebic encephalitis (GAE) though these cases may not commonly be reported in our clinical settings. Acanthamoeba has been detected from different environmental sources namely; soil, water, hot-spring, swimming pool, air-conditioner, or contact lens storage cases. The identification of Acanthamoeba is based on morphological appearance and molecular techniques using PCR and DNA sequencing for clinico-epidemiological purposes. Recent treatments have long been ineffective against Acanthamoeba cyst, novel anti-Acanthamoeba agents have therefore been extensively investigated. There are efforts to utilize synthetic chemicals, lead compounds from medicinal plant extracts, and animal products to combat Acanthamoeba infection. Applied nanotechnology, an advanced technology, has shown to enhance the anti-Acanthamoeba activity in the encapsulated nanoparticles leading to new therapeutic options. This review attempts to provide an overview of the available data and studies on the occurrence of pathogenic Acanthamoeba among the Association of Southeast Asian Nations (ASEAN) members with the aim of identifying some potential contributing factors such as distribution, demographic profile of the patients, possible source of the parasite, mode of transmission and treatment. Further, this review attempts to provide future direction for prevention and control of the Acanthamoeba infection.


Asunto(s)
Acanthamoeba , Amebiasis/epidemiología , Acanthamoeba/clasificación , Acanthamoeba/aislamiento & purificación , Acanthamoeba/fisiología , Amebiasis/diagnóstico , Amebiasis/terapia , Amebiasis/transmisión , Asia Sudoriental/epidemiología , Suelo/parasitología , Agua/parasitología
5.
Vet World ; 17(4): 735-743, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38798280

RESUMEN

Background and Aim: Milk, a nutritious food, is widely consumed in human diets; however, contamination by micro-organisms can negatively impact its quality and consumer health. Contamination by micro-organisms affects the quality of milk, which can affect the quality of the milk production chain. This study aimed to determine the changes in milk composition and antibiotic susceptibility related to bacteria isolated from dairy cow milk. Materials and Methods: Raw milk samples were collected from 72 dairy cows. All milk samples were subjected to the California Mastitis Test (CMT) for CMT score determination. We also investigated milk composition, bacterial culture (BC), and antibiotic susceptibility. Results: About 47.22% and 30.56% of dairy cattle were positive for CMT + BC and automatic somatic cell count (ASCC) + BC, respectively. Fecal appearance and animal age were found to be risk factors for ASCC + BC positivity in dairy cattle. Bacteria were found in approximately 76% of milk samples, with the most common isolated species being α-hemolytic Streptococcus spp., coagulase-negative Staphylococcus spp., and Escherichia coli. Of these, 70% are resistant to at least one antibiotic. Variation in the multidrug resistance pattern was high in Klebsiella spp. Conclusions: Fecal appearance and animal age are risk factors for ASCC + BC positivity in dairy cattle. This study identified antibiotic and multidrug resistance patterns, which require comprehensive studies and effective surveillance systems. Remarkably, the use of antibiotic therapy in dairy cattle should be monitored.

6.
Antibiotics (Basel) ; 13(9)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39334981

RESUMEN

Leishmaniasis is a tropical infectious disease caused by Leishmania parasites. The disease can be spread by the bite of an infected sand fly. Currently, five chemotherapeutic drugs are available in leishmaniasis treatment. However, these drugs exhibit toxicity and serious adverse effects on infected individuals, necessitating alternative treatment strategies. One such strategy involves using combinations of existing antileishmanial drugs. In this study, we evaluated the interaction between artesunate (AS) and three antileishmanial drugs-amphotericin B (AmB), miltefosine (MF), and paromomycin (PM) against Leishmania infantum. This evaluation marks the first time such an assessment has been conducted. The Chou-Talalay combination index method was employed to analyze the drug interaction. The findings revealed that the interaction between AS and AmB ranged from antagonistic to synergistic, while the interaction between AS and MF showed moderate to strong synergism. In contrast, the interaction between AS and PM resulted in an antagonistic interaction, which differs from the combinations with AmB or MF. This study provides valuable insights for developing novel drug regimens for leishmaniasis treatment, emphasizing the potential of AS and its combination with existing antileishmanial drugs. Further research is necessary to optimize drug combinations and minimize adverse effects, leading to more effective therapeutic outcomes.

7.
Vet World ; 17(6): 1405-1412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39077440

RESUMEN

Background and Aim: Mycobacterium tuberculosis causes global concern with tuberculosis (TB). Multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) pose additional challenges, as they resist to multiple first-line drugs. This study investigated the occurrence of TB, antibiotic resistance due to inhA and katG gene mutations, and multidrug resistance in M. tuberculosis during fiscal years 2020-2022. Materials and Methods: Samples were gathered from hospitals in seven provinces of upper Southern Thailand. The study investigated the correlation between inhA and katG gene mutations in M. tuberculosis and the development of antimicrobial resistance and isoniazid resistance. Results: A total of 19,186 samples were sent to the Office of Disease Prevention and Control Region 11st, Nakhon Si Thammarat, Thailand. The results showed that 51% of the samples were obtained from patients located in Nakhon Si Thammarat, followed by Surat Thani provinces. Regarding the spatial distribution of TB-infected cases, the incidence of TB was high in the province, which has a moderate to high population density. The highest average occurrence of TB in this study was found in Phuket province (9.75/100,000 risk person-year). The detected isoniazid resistance was 394, 255, and 179 cases in 2020, 2021, and 2022, respectively. A total of 99 isolates were MDR, whereas four isolates were XDR. The antimicrobial resistance associated with the inhA mutation was 192, 142, and 105 isolates, respectively, whereas the resistance associated with the katG mutation was 249, 182, and 120 cases in 2020, 2021, and 2022, respectively. Conclusion: These findings contribute to the understanding of the occurrence of antibiotic-resistant TB that could lead to use as data for preventing MDR-TB.

8.
Biology (Basel) ; 13(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39336148

RESUMEN

Exposure to pesticides, poses a significant threat to male fertility by compromising crucial cells involved in spermatogenesis. Aminocarb, is a widely used carbamate insecticide, although its detrimental effects on the male reproductive system, especially on sustentacular Sertoli cells, pivotal for spermatogenesis, remains poorly understood. In this study, we investigated the effects of escalating concentrations of aminocarb on a mouse Sertoli cell line, TM4. Assessments included cytotoxic analysis, mitochondrial biogenesis and membrane potential, expression of apoptotic proteins, caspase-3 activity, and oxidative stress evaluation. Our findings revealed a dose-dependent reduction in the proliferation and viability of TM4 cells following exposure to increasing concentrations of aminocarb. Notably, exposure to 5 µM of aminocarb induced depolarization of mitochondria membrane potential, and a significant decrease in the ratio of phosphorylated eIF2α to total eIF2α, suggesting heightened endoplasmic reticulum stress via the activation of the eIF2α pathway. Moreover, the same aminocarb concentration was demonstrated to increase both caspase-3 protein levels and activity, indicating an apoptotic induction. Collectively, our results demonstrate that aminocarb serves as an apoptotic inducer for mouse sustentacular Sertoli cells in vitro, suggesting its potential to modulate independent pathways of the apoptotic cascade. These findings underscore the deleterious impact of aminocarb on spermatogenic performance and male fertility, highlighting the urgent need for further investigation into its mechanisms of action and mitigation strategies to safeguard male fertility.

9.
J Toxicol Environ Health A ; 76(9): 533-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750999

RESUMEN

Thiodicarb, a carbamate pesticide widely used on crops, may pose several environmental and health concerns. This study aimed to explore its toxicological profile on male rats using hematological, biochemical, histopathological, and flow cytometry markers. Exposed animals were dosed daily at 10, 20, or 40 mg/kg/body weight (group A, B, and C, respectively) during 30 d. No significant changes were observed in hematological parameters among all groups. After 10 d, a decrease of total cholesterol levels was noted in rats exposed to 40 mg/kg. Aspartate aminotransferase (AST) activity increased (group A at 20 d; groups A and B at 30 d) and alkaline phosphatase (ALP) (group B at 30 d) activity significantly reduced. At 30 d a decrease of some of the other evaluated parameters was observed with total cholesterol and urea levels in group A as well as total protein and creatinine levels in groups A and B. Histological results demonstrated multi-organ dose-related damage in thiodicarb-exposed animals, evidenced as hemorrhagic and diffuse vacuolation in hepatic tissue; renal histology showed disorganized glomeruli and tubular cell degeneration; spleen was ruptured with white pulp and clusters of iron deposits within red pulp; significant cellular loss was noted at the cortex of thymus; and degenerative changes were observed within testis. The histopathologic alterations were most prominent in the high-dose group. Concerning flow cytometry studies, an increase of lymphocyte number, especially T lymphocytes, was seen in blood samples from animals exposed to the highest dose. Taken together, these results indicate marked systemic organ toxicity in rats after subacute exposure to thiodicarb.


Asunto(s)
Plaguicidas/toxicidad , Tiocarbamatos/toxicidad , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Proliferación Celular/efectos de los fármacos , Colesterol/sangre , Relación Dosis-Respuesta a Droga , Citometría de Flujo/métodos , Hemorragia/inducido químicamente , Hemorragia/patología , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Recuento de Linfocitos , Linfocitos/efectos de los fármacos , Linfocitos/patología , Masculino , Ratas , Ratas Wistar , Factores de Tiempo , Pruebas de Toxicidad
10.
J Clin Med ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762736

RESUMEN

L-Carnitine, a natural antioxidant found in mammals, plays a crucial role in the transport of long-chain fatty acids across the inner mitochondrial membrane. It is used as a nutritional supplement by professional athletes, improving performance and post-exercise recovery. Additionally, its therapeutic applications, including those in male infertility, have been investigated, as it may act as a defense mechanism against the excessive production of reactive oxygen species (ROS) in the testis, a process that can lead to sperm damage. This effect is achieved by enhancing the expression and activity of enzymes with antioxidant properties. Nevertheless, the mechanisms underlying the benefits of L-Carnitine remain unknown. This review aims to consolidate the current knowledge about the potential benefits of L-Carnitine and its role in male (in)fertility. Considering in vitro studies with Sertoli cells, pre-clinical studies, and investigations involving infertile men, a comprehensive understanding of the effects of L-Carnitine has been established. In vitro studies suggest that L-Carnitine has a direct influence on somatic Sertoli cells, improving the development of germ cells. Overall, evidence supports that L-Carnitine can positively impact male fertility, even at a relatively low dose of 2 g/day. This supplementation enhances sperm parameters, regulates hormone levels, reduces ROS levels, and subsequently improves fertility rates. However, further research is needed to elucidate the underlying mechanisms and establish optimal doses. In conclusion, the role of L-Carnitine in the field of male reproductive health is highlighted, with the potential to improve sperm quality and fertility.

11.
Vet World ; 16(5): 1131-1140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37576777

RESUMEN

Background and Aim: Probiotics are beneficial microorganisms for humans and animals. In this study, we developed a microencapsulated probiotic with antibacterial activity against avian pathogenic Escherichia coli (APEC). Materials and Methods: Alignment of the 16S rRNA sequences of the isolate WU222001 with those deposited in GenBank revealed that the isolate was Pediococcus acidilactici with 99.6% homology. This bacterium was characterized as a probiotic based on its tolerance toward in vitro gastrointestinal tract (GIT) conditions, hydrophobicity, and auto-aggregation. The antibacterial activity of the probiotic's culture supernatant against APEC was investigated using a broth microdilution assay. Pediococcus acidilactici was microencapsulated using sodium alginate and agar with diameters ranging from 47 to 61 µm. Then, physicochemical characteristics and stability of the microcapsules were determined. Results: The isolate was characterized as a probiotic based on its resistance to low pH, bile salts, and pancreatin, with relative values of 79.2%, 70.95%, and 90.64%, respectively. Furthermore, the bacterium exhibited 79.56% auto-aggregation and 55.25% hydrophobicity at 24 h. The probiotic's culture supernatant exhibited strong antibacterial activity against clinical APEC isolates with minimum inhibitory concentration and minimum bactericidal concentration of 12.5% and 25% v/v, respectively. Microencapsulation-enhanced bacterial viability in GIT compared to free cells. Moreover, 89.65% of the encapsulated cells were released into the simulated intestinal fluid within 4 h. The viable count in microcapsules was 63.19% after 3 months of storage at 4°C. Conclusion: The results indicated that the culture supernatant of P. acidilactici inhibited the growth of APEC. In addition, microencapsulation extends the viability of P. acidilactici under harsh conditions, indicating its potential application in the feed production.

12.
Vet World ; 16(6): 1346-1355, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37577190

RESUMEN

The emergence of antibiotic-resistant bacteria and hospital-acquired bacterial infection has become rampant due to antibiotic overuse. Virulence factors are secondary to bacterial growth and are important in their pathogenesis, and therefore, new antimicrobial therapies to inhibit bacterial virulence factors are becoming important strategies against antibiotic resistance. Here, we focus on anti-virulence factors that act through anti-quorum sensing and the subsequent clearance of bacteria by antimicrobial compounds, especially active herbal extracts. These quorum sensing systems are based on toxins, biofilms, and efflux pumps, and bioactive compounds isolated from medicinal plants can treat bacterial virulence pathologies. Ideally, bacterial virulence factors are secondary growth factors of bacteria. Hence, inhibition of bacterial virulence factors could reduce bacterial pathogenesis. Furthermore, anti-virulence factors from herbal compounds can be developed as novel treatments for bacterial infection. Therefore, this narrative review aims to discuss bacterial virulence factors acting through quorum sensing systems that are preserved as targets for treating bacterial infection by plant-derived compounds.

13.
Comp Immunol Microbiol Infect Dis ; 103: 102093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976973

RESUMEN

Extended-spectrum beta-lactamase (ESBL) production and biofilm formation are mechanisms employed by Escherichia coli to resist beta-lactam antibiotics. Thus, we aimed to examine antibiotic resistance associated with ESBL production and biofilm formation in E. coli isolates from swine farms in Southern Thailand. In total, 159 E. coli isolates were obtained, with 44 isolates identified as ESBL producers, originating from feces (18.87 %) and wastewater (8.80 %) samples. All ESBL-producing strains exhibited resistance to ampicillin (100 %), followed by the cephalosporin group (97.73 %) and tetracycline (84.09 %). Multidrug resistance was observed in 17 isolates (38.63 %). Among the isolates from feces samples, the blaGES gene was the most prevalent, detected in 90 % of the samples, followed by blaCTX-M9 (86.67 %) and blaCTX-M1 (66.67 %), respectively. In the bacteria isolated from wastewater, both blaGES and blaCTX-M9 genes were the predominant resistance genes, detected in 100 % of the isolates, followed by blaCTX-M1 (64.29 %) and blaTEM (50 %), respectively. Strong biofilm formation was observed in 11 isolates (36.67 %) from feces and 4 isolates (25.57 %) from wastewater samples. Notably, nearly 100 % of ESBL-producing strains isolated from feces tested positive for both pgaA and pgaC genes, which play a role in intracellular adhesion and biofilm production. These findings contribute to the understanding and potential control of ESBL-producing E. coli, and the dissemination of antibiotic resistance and biofilm-related genes in swine farms.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de los Porcinos , Animales , Porcinos , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Aguas Residuales , beta-Lactamasas/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Biopelículas , Proteínas de la Membrana Bacteriana Externa
14.
Vet World ; 16(10): 2135-2142, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38023268

RESUMEN

Background and Aim: Staphylococci, including Staphylococcus aureus, Staphylococcus chromogenes, and Staphylococcus haemolyticus, are significant bacteria that induce bovine mastitis, primarily because they can form biofilms in bovine teat canals. This study aimed to investigate the efficacy of Piper betle extract and a bovine teat dipping solution containing P. betle extract (BSP) against these mastitis-causing staphylococci. Materials and Methods: BSP was prepared using P. betle extract as the bioactive compound. The antibacterial activity of the plant extract and BSP against the pathogens was investigated using a broth microdilution method. The activity of the extract and BSP against the pathogen biofilms was also determined. A stability test was performed to observe the pH, color, turbidity, homogeneity, precipitation, and separation of BSP stored at 4°C and 25°C for up to 4 weeks. Results: The extract exhibited potent antibacterial activity against S. aureus and S. haemolyticus, with similar values for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) ranging from 0.03 mg/mL to 0.125 mg/mL. The MIC and MBC values of the extract against S. chromogenes were 0.5-1 mg/mL and 0.5-2 mg/mL, respectively. Moreover, BSP exhibited MIC and MBC values of 12.5-50 v/v against all tested staphylococci isolates. When used at 1/2 and 1/4 × MIC, the extract and BSP significantly inhibited the formation of staphylococcal biofilms (p < 0.05) in the tested strains. The results indicated that treatment with 1/2 × MIC of the extract and BSP resulted in biofilm inhibition ranging from 30%-66% and 19%-39%, respectively. Furthermore, the extract at 16 × MIC eliminated 54%-86% of established mature isolate biofilms, whereas BSP removed 41%-61% of mature biofilm viability. Storage of BSP at 4°C did not change the factors associated with stability from the 1st to 4th week. Conclusion: These findings suggest that BSP may exhibit potential medicinal benefits in inhibiting the growth and biofilm formation of mastitis-inducing staphylococci in bovines.

15.
Antioxidants (Basel) ; 13(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38247463

RESUMEN

Leydig cells (LCs) play a pivotal role in male fertility, producing testosterone. Chromium (III) picolinate (CrPic3), a contentious supplement with antidiabetic and antioxidant properties, raises concerns regarding male fertility. Using a rodent LC line, we investigated the cytotoxicity of increasing CrPic3 doses. An insulin resistance (IR) model was established using palmitate (PA), and LCs were further exposed to CrPic3 to assess its antioxidant/antidiabetic activities. An exometabolome analysis was performed using 1H-NMR. Mitochondrial function and oxidative stress were evaluated via immunoblot. Steroidogenesis was assessed by quantifying androstenedione through ELISA. Our results uncover the toxic effects of CrPic3 on LCs even at low doses under IR conditions. Furthermore, even under these IR conditions, CrPic3 fails to enhance glucose consumption but restores the expression of mitochondrial complexes CII and CIII, alleviating oxidative stress in LCs. While baseline androgen production remained unaffected, CrPic3 promoted androstenedione production in LCs in the presence of PA, suggesting that it promotes cholesterol conversion into androgenic intermediates in this context. This study highlights the need for caution with CrPic3 even at lower doses. It provides valuable insights into the intricate factors influencing LCs metabolism and antioxidant defenses, shedding light on potential benefits and risks of CrPic3, particularly in IR conditions.

16.
Diseases ; 11(2)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37092446

RESUMEN

The WHO declared coronavirus disease 2019 (COVID-19) a pandemic in March 2020, which was caused by novel coronavirus severe acute respiratory coronavirus 2 (SARS-CoV-2). SARS-CoV-2 made its first entry into the world in November 2019, and the first case was detected in Wuhan, China. Mutations in the SARS-CoV-2 genome distressed life in almost every discipline by the extended production of novel viral variants. In this article, authorized SARS-CoV-2 vaccines including mRNA vaccines, DNA vaccines, subunit vaccines, inactivated virus vaccines, viral vector vaccine, live attenuated virus vaccines and mix and match vaccines will be discussed based on their mechanism, administration, storage, stability, safety and efficacy. The information was collected from various journals via electronic searches including PubMed, Science Direct, Google Scholar and the WHO platform. This review article includes a brief summary on the pathophysiology, epidemiology, mutant variants and management strategies related to COVID-19. Due to the continuous production and unsatisfactory understanding of novel variants of SARS-CoV-2, it is important to design an effective vaccine along with long-lasting protection against variant strains by eliminating the gaps through practical and theoretical knowledge. Consequently, it is mandatory to update the literature through previous and ongoing trials of vaccines tested among various ethnicities and age groups to gain a better insight into management strategies and combat complications associated with upcoming novel variants of SARS-CoV-2.

17.
Vet Sci ; 10(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37104416

RESUMEN

Gastrointestinal parasites (GIP) are a major cause of disease and production loss in livestock. Some have zoonotic potential, so production animals can be a source of human infections. We describe the prevalence of GIP in domestic mammals in Southeastern Iran. Fresh fecal samples (n = 200) collected from cattle (n = 88), sheep (n = 50), goats (n = 23), camels (n = 30), donkeys (n = 5), horse (n = 1), and dogs (n = 3) were subjected to conventional coprological examination for the detection of protozoan (oo)cysts and helminth ova. Overall, 83% (166/200) of the samples were positive for one or more GIP. Helminths were found in dogs, donkeys, sheep (42%), camels (37%), goats (30%), and cattle (19%), but not in the horse. Protozoa were found in cattle (82%), goats (78%), sheep (60%), and camels (13%), but not in donkeys, dogs, or the horse. Lambs were 3.5 times more likely to be infected by protozoa than sheep (OR = 3.5, 95% CI: 1.05-11.66), whereas sheep were at higher odds of being infected by helminths than lambs (OR = 4.09, 95% CI: 1.06-16.59). This is the first study assessing the prevalence of GIP in domestic mammals in Southeastern Iran.

18.
PeerJ ; 11: e15590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529215

RESUMEN

The biosynthesis of nanoparticles using the green route is an effective strategy in nanotechnology that provides a cost-effective and environmentally friendly alternative to physical and chemical methods. This study aims to prepare an aqueous extract of Ocimum sanctum (O. sanctum)-based silver nanoparticles (AgNPs) through the green route and test their antibacterial activity. The biosynthesized silver nanoparticles were characterised by colour change, UV spectrometric analysis, FTIR, and particle shape and size morphology by SEM and TEM images. The nanoparticles are almost spherical to oval or rod-shaped with smooth surfaces and have a mean particle size in the range of 55 nm with a zeta potential of -2.7 mV. The antibacterial activities of AgNPs evaluated against clinically isolated multidrug-resistant Acinetobacter baumannii (A. baumannii) showed that the AgNPs from O. sanctum are effective in inhibiting A. baumannii growth with a zone of inhibition of 15 mm in the agar well diffusion method and MIC and MBC of 32 µg/mL and 64 µg/mL, respectively. The SEM images of A. baumannii treated with AgNPs revealed damage and rupture in bacterial cells. The time-killing assay by spectrophotometry revealed the time- and dose-dependent killing action of AgNPs against A. baumannii, and the assay at various concentrations and time intervals indicated a statistically significant result in comparison with the positive control colistin at 2 µg/mL (P < 0.05). The cytotoxicity test using the MTT assay protocol showed that prepared nanoparticles of O. sanctum are less toxic against human cell A549. This study opens up a ray of hope to explore the further research in this area and to improve the antimicrobial activities against multidrug resistant bacteria.


Asunto(s)
Acinetobacter baumannii , Acinetobacter calcoaceticus , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/uso terapéutico , Plata/farmacología , Ocimum sanctum , Antibacterianos/farmacología
19.
Vet World ; 15(6): 1481-1488, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35993065

RESUMEN

Background and Aim: Lepidium meyenii Walp (Maca) is an herbaceous plant that grows in the Peruvian Andes and it has been widely used as a nutritional supplement and fertility enhancer and has been used in the treatment of a variety of diseases, such as rheumatism, respiratory disorders, and anemia. The most notable feature of Maca is its potent antioxidant capacity, which helps in the scavenging of free radicals and protection of cells from oxidative stress. This study aimed to evaluate the in vitro effect of Maca extract on thawed sperm cells from bulls. Materials and Methods: Three dilutions of 1, 10, and 100 mg/mL of Maca extract were incubated with frozen-thawed bovine semen and analyzed at 1, 3, and 24 h of exposure time, evaluating the activity of the extract on the DNA, motility, morphology, viability, integrity of the membrane and acrosome of spermatozoa. Results: The Maca extract improved the studied sperm parameters of motility, acrosome integrity, vitality, and DNA integrity of sperm cells at a concentration of 10 mg/mL, and at 1 mg/mL, an improvement was observed in the morphology and integrity of the membrane. However, the best activity of the Maca extract was observed on the DNA integrity of the sperm, which was effective at the three concentrations evaluated after 24 h of incubation. Conclusion: The results indicate that L. meyenii can help in maintaining spermatozoa cellular integrity after the frozen-thaw process, especially in the protection against DNA fragmentation. Therefore, Maca would be a feasible supplementation to protect sperm to maintain their fertile ability after thawing.

20.
Plants (Basel) ; 11(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432843

RESUMEN

Verbena officinalis L. or vervain is an herbal medicine and dietary supplement used worldwide. It is used for antidepressant and anticonvulsant purposes, as well as to treat inflammatory disorders, skin burns, abrasions, and gastric diseases, among others. Here, we investigated the biochemical, antioxidant, and histopathological effects of vervain against chronic physical stress. Male Wistar rats were submitted to chronic physical training and oral administration of 200 mg/kg of extract for 7 weeks. Control animals were not treated with either stress or vervain. Body weight was monitored during the study. Liver, kidney, spleen, testis, epididymis, heart, skeletal muscle, and brain samples were collected. Blood cholesterol, lactate dehydrogenase (LDH), bilirubin, and creatinine kinase (CREA), among others, were studied. Glutathione peroxidase (GPox) and superoxide dismutase (SOD) antioxidant activity was analyzed in the blood, liver, and kidney. Testosterone measurements were also performed on whole testis extracts. We found significant weight ratios differences in the epididymis, brain, and heart. Animals submitted to training showed hemorrhagic livers. Kidney histology was affected by both stress and vervain. Cell disruption and vacuolization were observed in the testes and epididymis of animals submitted to stress. Hematological and biochemical markers as CREA, LDH, TP, CKI, URCA, γGT, and glucose revealed statistically significantly differences. Additionally, the activity of glutathione peroxide (GPox) and superoxide dismutase (SOD) in the blood was also impacted. Both stress and vervain have significant in vivo effects. Infusions of vervain include phenylpropanoids, iridoids, verbenalin, hastatoside, and flavonoids, amongst others, which interact synergistically to produce the preclinical effects reported here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA