Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 117: e220155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700580

RESUMEN

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has become a major concern contributing to increased morbidity and mortality worldwide. OBJECTIVES: Here we describe the replacement of the Gamma variant of concern (VOC) with Delta in the western Brazilian Amazon. METHODS: In this study, we analysed 540 SARS-CoV-2 positive samples determined by qualitative real-time RT-PCR selected in the state of Rondônia between June and December 2021. The positive cohort was sequenced through next-generation sequencing (NGS) and each sample was quantified using real-time RT-qPCR, the whole genome sequence was obtained, SARS-CoV-2 lineages were classified using the system Pango and the maximum likelihood (ML) method was used to conduct phylogenetic analyses. FINDINGS: A total of 540 high-quality genomes were obtained, where the Delta VOC showed the highest prevalence making up 72%, with strain AY.43 being the most abundant, while the Gamma VOC was present in 28%, where the P.1 strain was the most frequent. In this study population, only 32.96% (178/540) had completed the vaccination schedule. MAIN CONCLUSIONS: This study highlighted the presence of Gamma and Delta variants of SARS-CoV-2 in RO. Furthermore, we observed the replacement of the Gamma VOC with the Delta VOC and its lineages.


Asunto(s)
COVID-19 , Humanos , Brasil/epidemiología , COVID-19/epidemiología , Filogenia , SARS-CoV-2/genética
2.
Mol Diagn Ther ; 28(4): 479-494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796660

RESUMEN

INTRODUCTION: Hantavirus, a zoonotic pathogen, causes severe syndromes like hemorrhagic fever with renal syndrome (HFRS), sometimes fatal in humans. Considering the importance of detecting the hantavirus antigen, the construction of an immunosensor is essential. The structural and functional characteristics of camelid nanobodies (VHHs) encourage their application in the areas of nanobiotechnology, therapeutics, diagnostics, and basic research. Therefore, this study aimed to standardize stable bioconjugates using gold nanoparticles (AuNPs) and VHHs, in order to develop immunobiosensors for the diagnosis of hantavirus infection. METHODS: Immobilized metal affinity chromatography (IMAC) was performed to obtain purified recombinant anti-hantavirus nucleocapsid nanobodies (anti-prNΔ85 VHH), while AuNPs were synthesized for bioconjugation. UV-visible spectrophotometry and transmission electron microscopy (TEM) analysis were employed to characterize AuNPs. RESULTS: The bioconjugation stability parameters (VHH-AuNPs), analyzed by spectrophotometry, showed that the ideal pH value and VHH concentration were obtained at 7.4 and 50 µg/mL, respectively, after addition of 1 M NaCl, which induces AuNP aggregation. TEM performed before and after bioconjugation showed uniform, homogeneous, well-dispersed, and spherical AuNPs with an average diameter of ~ 14 ± 0.57 nm. Furthermore, high-resolution images revealed a thin white halo on the surface of the AuNPs, indicating the coating of the AuNPs with protein. A biosensor simulation test (dot blot-like [DB-like]) was performed in stationary phase to verify the binding and detection limits of the recombinant nucleocapsid protein from the Araucária hantavirus strain (prN∆85). DISCUSSION: Using AuNPs/VHH bioconjugates, a specific interaction was detected between 5 and 10 min of reaction in a dose-dependent manner. It was observed that this test was sensitive enough to detect prNΔ85 at concentrations up to 25 ng/µL. Considering that nanostructured biological systems such as antibodies conjugated with AuNPs are useful tools for the development of chemical and biological sensors, the stability of the bioconjugate indicates proficiency in detecting antigens. The experimental results obtained will be used in a future immunospot assay or lateral flow immunochromatography analysis for hantavirus detection.


Asunto(s)
Técnicas Biosensibles , Oro , Nanopartículas del Metal , Orthohantavirus , Anticuerpos de Dominio Único , Oro/química , Nanopartículas del Metal/química , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Orthohantavirus/inmunología , Humanos , Técnicas Biosensibles/métodos , Anticuerpos Antivirales/inmunología , Animales , Infecciones por Hantavirus/diagnóstico
3.
Toxicon ; 247: 107837, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945216

RESUMEN

Camelid immunoglobulins represent a unique facet of antibody biology, challenging conventional understandings of antibody diversification. IgG2 and IgG3 in particular are composed solely of heavy chains and exhibit a reduced molecular weight (90 kDa); their elongated complementarity determining region (CDR) loops play a pivotal role in their functioning, delving deep into enzyme active sites with precision. Serum therapy stands as the primary venom-specific treatment for snakebite envenomation, harnessing purified antibodies available in diverse forms such as whole IgG, monovalent fragment antibody (Fab), or divalent fragment antibody F (ab')2. This investigation looks into the intricacies of IgGs derived from camelid serum previously immunized with crotamine and crotoxin, toxins predominantly in Crotalus durissus venom, exploring their recognition capacity, specificity, and cross-reactivity to snake venoms and its toxins. Initially, IgG purification employed affinity chromatography via protein A and G columns to segregate conventional antibodies (IgG1) from heavy chain antibodies (IgG2 and IgG3) of camelid isotypes sourced from Lama glama serum. Subsequent electrophoretic analysis (SDS-PAGE) revealed distinct bands corresponding to molecular weight profiles of IgG's fractions representing isotypes in Lama glama serum. ELISA cross-reactivity assays demonstrated all three IgG isotypes' ability to recognize the tested venoms. Notably, IgG1 exhibited the lowest interactivity in analyses involving bothropic and crotalic venoms. However, IgG2 and IgG3 displayed notable cross-reactivity, particularly with crotalic venoms and toxins, albeit with exceptions such as PLA2-CB, showing reduced reactivity, and C. atrox, where IgGs exhibited insignificant reactivity. In Western blot assays, IgG2 and IgG3 exhibited recognition of proteins within molecular weight (≈15 kDa) of C. d. collilineatus to C. d. terrificus, with some interaction observed even with bothropic proteins despite lower reactivity. These findings underscore the potential of camelid heavy-chain antibodies, suggesting Lama glama IgGs as prospective candidates for a novel class of serum therapies. However, further investigations are imperative to ascertain their suitability for serum therapy applications.

4.
J Virol Methods ; 320: 114787, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516366

RESUMEN

Viral infections have been the cause of high mortality rates throughout different periods in history. Over the last two decades, outbreaks caused by zoonotic diseases and transmitted by arboviruses have had a significant impact on human health. The emergence of viral infections in different parts of the world encourages the search for new inputs to fight pathologies of viral origin. Antibodies represent the predominant class of new drugs developed in recent years and approved for the treatment of various human diseases, including cancer, autoimmune and infectious diseases. A promising group of antibodies are single-domain antibodies derived from camelid heavy chain immunoglobulins, or VHHs, are biomolecules with nanometric dimensions and unique pharmaceutical and biophysical properties that can be used in the diagnosis and immunotherapy of viral infections. For viral neutralization to occur, VHHs can act in different stages of the viral cycle, including the actual inhibition of infection, to hindering viral replication or assembly. This review article addresses advances involving the use of VHHs in therapeutic propositions aimed to battle different viruses that affect human health.


Asunto(s)
Antivirales , Anticuerpos de Dominio Único , Virosis , Anticuerpos de Dominio Único/uso terapéutico , Animales , Camelidae/metabolismo , Antivirales/uso terapéutico , Terapia Molecular Dirigida , Virosis/tratamiento farmacológico , Virosis/virología , Humanos , Virus/clasificación
5.
Front Microbiol ; 13: 971083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274692

RESUMEN

Antibiotic treatment has been used to enhance anopheline susceptibility to Plasmodium infection, because bacterial microbiota play a fundamental role in modulating the vector competence of mosquitoes that transmit Plasmodium parasites. However, few studies have examined the impact of antibiotic treatments on Plasmodium vivax sporogonic development in neotropical anopheline mosquitoes. Herein, we assessed the impact of antibiotic treatment on P. vivax development and survival in Anopheles darlingi, the main vector of malaria in the Amazon region. Female mosquitoes were treated continuously with antibiotics to impact the gut bacterial load and then tested for prevalence, infection intensity, and survival in comparison with untreated mosquitoes. Antibiotic-fed mosquitoes had not dramatic impact on P. vivax development previously observed in P. falciparum. However, antibiotic treatment increases mosquito survival, which is known to increase vectorial capacity. These findings raise questions about the effect of antibiotics on P. vivax development and survival in An. darlingi.

6.
Exp Biol Med (Maywood) ; 246(23): 2443-2453, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34424091

RESUMEN

Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Reactores Biológicos/microbiología , Biotecnología/métodos , Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformación Bacteriana/genética
7.
Mol Diagn Ther ; 25(4): 439-456, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34146333

RESUMEN

The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Diagnóstico Precoz , Anticuerpos de Dominio Único/inmunología , Animales , Estabilidad de Medicamentos , Humanos , Pruebas en el Punto de Atención , Sensibilidad y Especificidad , Anticuerpos de Dominio Único/química
8.
Int J Infect Dis ; 104: 373-378, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33434663

RESUMEN

INTRODUCTION: Coronavirus disease-2019 (COVID-19) is a disease caused by Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) that emerged in China in late 2019. The rapid viral spread has made the disease a public health emergency of worldwide concern. The gold standard for diagnosing SARS-CoV-2 is reverse transcription followed by qualitative real-time polymerase chain reaction (RT-qPCR); however, the role of viral load quantification has not been thoroughly investigated yet. OBJECTIVE: The aim of this study was to develop a high-precision quantitative one-step RT-qPCR reaction using the association of the viral target and the human target in the same reaction. METHODS: The assay standardization involved the absolute quantification method, with serial dilutions of a plasmid with the N gene in a biological matrix to build a standard curve. RESULTS AND DISCUSSION: The results demonstrated the possibility of quantifying as few as 2.5 copies/reaction and an analysis of 244 patients with known results selected by cross-section that revealed 100% agreement with a qualitative RT-qPCR assay registered by Anvisa. In this population, it was possible to quantify patients with between 2.59 and 3.5 × 107 copies per reaction and negative patients continued to indicate the same result. CONCLUSION: This assay can be a useful tool for a proper patient management, because the level and duration of viral replication are important factors to assess the risk of transmission and to guide decisions regarding the isolation and release of patients; an accurate diagnosis is critical information, whereas the current COVID-19 pandemic represents the biggest current global health problem.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Sensibilidad y Especificidad , Carga Viral , Adulto Joven
9.
J Leukoc Biol ; 106(3): 595-605, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31087703

RESUMEN

BjcuL is a C-type lectin isolated from Bothrops jararacussu snake venom with specificity for binding ß-d-galactose units. BjcuL is not toxic to human peripheral blood mononuclear cells (PBMCs), but it inhibits PBMC proliferation and stimulates these cells to produce superoxide anions and hydrogen peroxide primarily via lymphocyte stimulation; it does not stimulate the production of nitric oxide and PGE2 . The purpose of this study was to investigate the effect of BjcuL on PBMC activation with a focus on cytokine release modulating PBMC proliferation. The results showed for the first time that BjcuL coupled to FITC interacted with monocytes, B cells, natural killer (NK) cells, and with subpopulations of T cells. These cell-cell interactions can lead to cell activation and inflammatory cytokines release, such as IL-6 and TNF-α, as well as the anti-inflammatory cytokine IL-10. In addition, TNF-α release was attributed to NK cells and monocytes, whereas IL-10 was attributed to TCD4+ and Treg cells when stimulated by BjcuL. The temporal cytokines profile produced by cells when stimulated with this lectin allows us to assert that BjcuL has immunomodulatory activity in this context.


Asunto(s)
Bothrops/metabolismo , Venenos de Crotálidos/química , Interleucina-10/metabolismo , Células Asesinas Naturales/metabolismo , Lectinas Tipo C/aislamiento & purificación , Monocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Humanos , Leucocitos Mononucleares/metabolismo
10.
Mem. Inst. Oswaldo Cruz ; 117: e220155, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1422141

RESUMEN

BACKGROUND The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has become a major concern contributing to increased morbidity and mortality worldwide. OBJECTIVES Here we describe the replacement of the Gamma variant of concern (VOC) with Delta in the western Brazilian Amazon. METHODS In this study, we analysed 540 SARS-CoV-2 positive samples determined by qualitative real-time RT-PCR selected in the state of Rondônia between June and December 2021. The positive cohort was sequenced through next-generation sequencing (NGS) and each sample was quantified using real-time RT-qPCR, the whole genome sequence was obtained, SARS-CoV-2 lineages were classified using the system Pango and the maximum likelihood (ML) method was used to conduct phylogenetic analyses. FINDINGS A total of 540 high-quality genomes were obtained, where the Delta VOC showed the highest prevalence making up 72%, with strain AY.43 being the most abundant, while the Gamma VOC was present in 28%, where the P.1 strain was the most frequent. In this study population, only 32.96% (178/540) had completed the vaccination schedule. MAIN CONCLUSIONS This study highlighted the presence of Gamma and Delta variants of SARS-CoV-2 in RO. Furthermore, we observed the replacement of the Gamma VOC with the Delta VOC and its lineages.

11.
Artículo en Portugués | LILACS | ID: lil-758431

RESUMEN

Anticorpos, agentes empregados no desenvolvimento de pesquisas biomédicas, no diagnóstico e na terapêutica, possuem elevada capacidade de interação aos mais variados ligantes, Estruturalmente são heterotetrameros constituídos por duas cadeias leves e duas cadeias pesadas com massa molecular de aproximadamente 150 kDa, Visando melhorar as características farmacocinéticas e minimizar possíveis reações adversas desencadeadas por imunoglobulinas de origem não humana, a engenharia molecular de anticorpos vem obtendo fragmentos de anticorpos como porções Fab, F(ab?)2, scFv e Fv, Em adição aos anticorpos convencionais, camelídeos produzem imunoglobulinas funcionais desprovidas de cadeia leve, onde o domínio variável da cadeia pesada, denominado VHH ou nanocorpo, é responsável pelo reconhecimento antigênico, Apresentando características adequadas ao desenvolvimento de fármacos com alta capacidade de neutralização, fragmentos VHHs vêm sendo propostos para uso em imunoterapia passiva ou em drug-delivery, No diagnóstico esses fragmentos podem ser aplicados na construção de biosensores ou na imagiologia, atuando na detecção de células cancerígenas, no monitoramento de tumores ou em alterações celulares...


Antibodies, agents employed for the development of biomedical research, diagnostic and therapeutic, have high ability to interact with different ligands. Structurally are heterotetramers constituted by two light and two heavy chains, with molecular weight of approximately 150 kDa. Aiming to improve the pharmacokinetic properties and minimize possible adverse reactions triggered by immunoglobulins of non-human origin, the molecular engineering of antibodies has been obtaining fragments of antibodies, such as Fab, F(ab?)2, Fv and scFv. In addition to the conventional antibodies, camelids produce functional immunoglobulins devoid of light chain, in which the variable domain, named VHH or nanocorpo, is able to recognize the antigen. With appropriate characteristics for the development of drugs with high neutralizing capacity, VHH fragments have been proposed for use in passive immunotherapy or drug-delivery. To the diagnosis, these fragments can be used to construct biosensors, in the imagiology , acting in the detection of cancer cells, tumor monitoring or cell changes...


Asunto(s)
Fragmentos de Inmunoglobulinas , Fragmentos de Inmunoglobulinas/uso terapéutico , Factores Inmunológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA