Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 173(7): 1593-1608.e20, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906446

RESUMEN

Proliferating cells known as neoblasts include pluripotent stem cells (PSCs) that sustain tissue homeostasis and regeneration of lost body parts in planarians. However, the lack of markers to prospectively identify and isolate these adult PSCs has significantly hampered their characterization. We used single-cell RNA sequencing (scRNA-seq) and single-cell transplantation to address this long-standing issue. Large-scale scRNA-seq of sorted neoblasts unveiled a novel subtype of neoblast (Nb2) characterized by high levels of PIWI-1 mRNA and protein and marked by a conserved cell-surface protein-coding gene, tetraspanin 1 (tspan-1). tspan-1-positive cells survived sub-lethal irradiation, underwent clonal expansion to repopulate whole animals, and when purified with an anti-TSPAN-1 antibody, rescued the viability of lethally irradiated animals after single-cell transplantation. The first prospective isolation of an adult PSC bridges a conceptual dichotomy between functionally and molecularly defined neoblasts, shedding light on mechanisms governing in vivo pluripotency and a source of regeneration in animals. VIDEO ABSTRACT.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas del Helminto/metabolismo , Planarias/fisiología , Tetraspaninas/metabolismo , Animales , Proteínas Argonautas/antagonistas & inhibidores , Proteínas Argonautas/genética , Ciclo Celular/efectos de la radiación , Regulación de la Expresión Génica , Proteínas del Helminto/antagonistas & inhibidores , Proteínas del Helminto/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Análisis de Componente Principal , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN de Helminto/química , ARN de Helminto/aislamiento & purificación , ARN de Helminto/metabolismo , Regeneración/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Tetraspaninas/genética , Irradiación Corporal Total
2.
PLoS Genet ; 19(2): e1010598, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809339

RESUMEN

Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.


Asunto(s)
Drosophila melanogaster , ARN de Interacción con Piwi , Animales , Drosophila melanogaster/genética , Elementos Transponibles de ADN , ARN Interferente Pequeño/genética , Drosophila/genética , Silenciador del Gen
3.
Dev Dyn ; 252(8): 1130-1142, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840366

RESUMEN

BACKGROUND: The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS: To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS: Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.


Asunto(s)
Sistema Nervioso Simpático , Transcriptoma , Animales , ARN Mensajero , Hibridación Fluorescente in Situ , Ganglios Simpáticos , Pollos
4.
Cell ; 135(5): 879-93, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041751

RESUMEN

The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and cytokinesis. The evolved cytokinesis phenotypes correlated with specific changes in the transcriptome. Polyploidy and aneuploidy were common genetic alterations in the best evolved strains, and aneuploidy could account for gene expression changes due directly to altered chromosome stoichiometry as well as to downstream effects. The phenotypic effect of aneuploidy could be recapitulated with increased copy numbers of specific regulatory genes in myo1Delta cells. These results demonstrate the evolvability of even a well-conserved process and suggest that changes in chromosome stoichiometry provide a source of heritable variation driving the emergence of adaptive phenotypes when the cell division machinery is strongly perturbed.


Asunto(s)
Aneuploidia , Evolución Molecular Dirigida , Cadenas Pesadas de Miosina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocinesis , Eliminación de Gen , Genoma Fúngico , Poliploidía
5.
Proc Natl Acad Sci U S A ; 117(7): 3603-3609, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015133

RESUMEN

5-Methylcytosine (m5C) is a RNA modification that exists in tRNAs and rRNAs and was recently found in mRNAs. Although it has been suggested to regulate diverse biological functions, whether m5C RNA modification influences adult stem cell development remains undetermined. In this study, we show that Ypsilon schachtel (YPS), a homolog of human Y box binding protein 1 (YBX1), promotes germ line stem cell (GSC) maintenance, proliferation, and differentiation in the Drosophila ovary by preferentially binding to m5C-containing RNAs. YPS is genetically demonstrated to function intrinsically for GSC maintenance, proliferation, and progeny differentiation in the Drosophila ovary, and human YBX1 can functionally replace YPS to support normal GSC development. Highly conserved cold-shock domains (CSDs) of YPS and YBX1 preferentially bind to m5C RNA in vitro. Moreover, YPS also preferentially binds to m5C-containing RNAs, including mRNAs, in germ cells. The crystal structure of the YBX1 CSD-RNA complex reveals that both hydrophobic stacking and hydrogen bonds are critical for m5C binding. Overexpression of RNA-binding-defective YPS and YBX1 proteins disrupts GSC development. Taken together, our findings show that m5C RNA modification plays an important role in adult stem cell development.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Óvulo/crecimiento & desarrollo , ARN/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Humanos , Ovario/metabolismo , Óvulo/metabolismo , ARN/genética , Células Madre/citología , Células Madre/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
6.
Genome Biol ; 25(1): 74, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504288

RESUMEN

BACKGROUND: Early embryonic developmental programs are guided by the coordinated interplay between maternally inherited and zygotically manufactured RNAs and proteins. Although these processes happen concomitantly and affecting gene function during this period is bound to affect both pools of mRNAs, it has been challenging to study their expression dynamics separately. RESULTS: By employing SLAM-seq, a nascent mRNA labeling transcriptomic approach, in a developmental time series we observe that over half of the early zebrafish embryo transcriptome consists of maternal-zygotic genes, emphasizing their pivotal role in early embryogenesis. We provide an hourly resolution of de novo transcriptional activation events and follow nascent mRNA trajectories, finding that most de novo transcriptional events are stable throughout this period. Additionally, by blocking microRNA-430 function, a key post transcriptional regulator during zebrafish embryogenesis, we directly show that it destabilizes hundreds of de novo transcribed mRNAs from pure zygotic as well as maternal-zygotic genes. This unveils a novel miR-430 function during embryogenesis, fine-tuning zygotic gene expression. CONCLUSION: These insights into zebrafish early embryo transcriptome dynamics emphasize the significance of post-transcriptional regulators in zygotic genome activation. The findings pave the way for future investigations into the coordinated interplay between transcriptional and post-transcriptional landscapes required for the establishment of animal cell identities and functions.


Asunto(s)
MicroARNs , Pez Cebra , Animales , Pez Cebra/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cigoto/metabolismo , Desarrollo Embrionario/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación del Desarrollo de la Expresión Génica
7.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39253476

RESUMEN

We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors and a population of canonical olfactory sensory neurons in the VNO. High resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and vomeronasal receptors, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.

8.
iScience ; 27(9): 110737, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39286507

RESUMEN

Injury is common in the life of organisms. Because the extent of damage cannot be predicted, injured organisms must determine how much tissue needs to be restored. Although it is known that amputation position affects the regeneration speed of appendages, mechanisms conveying positional information remain unclear. We investigated tissue dynamics in regenerating caudal fins of the African killifish (Nothobranchius furzeri) and found position-specific, differential spatial distribution modulation, persistence, and magnitude of proliferation. Single-cell RNA sequencing revealed a transient regeneration-activated cell state (TRACS) in the basal epidermis that is amplified to match a given amputation position and expresses components and modifiers of the extracellular matrix (ECM). Notably, CRISPR-Cas9-mediated deletion of the ECM modifier sequestosome 1 (sqstm1) increased the regenerative capacity of distal injuries, suggesting that regeneration growth rate can be uncoupled from amputation position. We propose that basal epidermis TRACS transduce positional information to the regenerating blastema by remodeling the ECM.

9.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071430

RESUMEN

Previous studies of hematopoietic stem cells (HSCs) primarily focused on single cell-based niche models, yielding fruitful but conflicting findings 1-5 . Here we report our investigation on the fetal liver (FL) as the primary fetal hematopoietic site using spatial transcriptomics. Our study reveals two distinct niches: the portal-vessel (PV) niche and the sinusoidal niche. The PV niche, composing N-cadherin (N-cad) Hi Pdgfrα + mesenchymal stromal cells (MSCs), endothelial cells (ECs), and N-cad Lo Albumin + hepatoblasts, maintains quiescent and multipotential FL-HSCs. Conversely, the sinusoidal niche, comprising ECs, hepatoblasts and hepatocytes, as well as potential macrophages and megakaryocytes, supports proliferative FL-HSCs biased towards myeloid lineages. Unlike prior reports on the role of Cxcl12, with its depletion from vessel-associated stromal cells leading to 80% of HSCs' reduction in the adult bone marrow (BM) 6,7 , depletion of Cxcl12 via Cdh2 CreERT (encoding N-cad) induces altered localization of HSCs from the PV to the sinusoidal niches, resulting in an increase of HSC number but with myeloid-bias. Similarly, we discovered that adult BM encompasses two niches within different zones, each composed of multi-cellular components: trabecular bone area (TBA, or metaphysis) supporting deep-quiescent HSCs, and central marrow (CM, or diaphysis) fostering heterogenous proliferative HSCs. This study transforms our understanding of niches by shifting from single cell-based to multicellular components within distinct zones, illuminating the intricate regulation of HSCs tailored to their different cycling states.

10.
Methods Mol Biol ; 2710: 171-183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37688732

RESUMEN

Spatial transcriptomics maps RNA molecules to the location in a tissue where they are expressed. Here we document the use of Slide-SeqV2 to visualize gene expression in the mouse olfactory bulb (OB). This approach relies on spatially identified beads to locate and quantify individual transcripts. The expression profiles associated with the beads are used to identify and localize individual cell types in an unbiased manner. We demonstrate the various cell types and subtypes with distinct spatial locations in the olfactory bulb that are identified using Slide-SeqV2.


Asunto(s)
Perfilación de la Expresión Génica , Bulbo Olfatorio , Animales , Ratones
11.
Hum Mol Genet ; 18(6): 1110-21, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19129173

RESUMEN

Proteins of the bone morphogenetic protein (BMP) family are known to have a role in ocular and skeletal development; however, because of their widespread expression and functional redundancy, less progress has been made identifying the roles of individual BMPs in human disease. We identified seven heterozygous mutations in growth differentiation factor 6 (GDF6), a member of the BMP family, in patients with both ocular and vertebral anomalies, characterized their effects with a SOX9-reporter assay and western analysis, and demonstrated comparable phenotypes in model organisms with reduced Gdf6 function. We observed a spectrum of ocular and skeletal anomalies in morphant zebrafish, the latter encompassing defective tail formation and altered expression of somite markers noggin1 and noggin2. Gdf6(+/-) mice exhibited variable ocular phenotypes compatible with phenotypes observed in patients and zebrafish. Key differences evident between patients and animal models included pleiotropic effects, variable expressivity and incomplete penetrance. These data establish the important role of this determinant in ocular and vertebral development, demonstrate the complex genetic inheritance of these phenotypes, and further understanding of BMP function and its contributions to human disease.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/patología , Factor 6 de Diferenciación de Crecimiento/genética , Penetrancia , Secuencia de Aminoácidos , Animales , Análisis Mutacional de ADN , Genes Reporteros , Factor 6 de Diferenciación de Crecimiento/química , Humanos , Ratones , Modelos Animales , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación/genética , Oligonucleótidos Antisentido/farmacología , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
12.
Curr Biol ; 31(4): 827-839.e3, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357404

RESUMEN

The niche controls stem cell self-renewal and progenitor differentiation for maintaining adult tissue homeostasis in various organisms. However, it remains unclear whether the niche is compartmentalized to control stem cell self-renewal and stepwise progeny differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells form a niche for controlling germline stem cell (GSC) progeny differentiation. In this study, we have identified four IGS subpopulations, which form linearly arranged niche compartments for controlling GSC maintenance and multi-step progeny differentiation. Single-cell analysis of the adult ovary has identified four IGS subpopulations (IGS1-IGS4), the identities and cellular locations of which have been further confirmed by fluorescent in situ hybridization. IGS1 and IGS2 physically interact with GSCs and mitotic cysts to control GSC maintenance and cyst formation, respectively, whereas IGS3 and IGS4 physically interact with 16-cell cysts to regulate meiosis, oocyte development, and cyst morphological change. Finally, one follicle cell progenitor population has also been transcriptionally defined for facilitating future studies on follicle stem cell regulation. Therefore, this study has structurally revealed that the niche is organized into multiple compartments for orchestrating stepwise adult stem cell development and has also provided useful resources and tools for further functional characterization of the niche in the future.


Asunto(s)
Diferenciación Celular , Quistes , Proteínas de Drosophila , Células Germinativas , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Hibridación Fluorescente in Situ , Nicho de Células Madre , Células Madre
13.
Cell Rep ; 36(10): 109674, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496236

RESUMEN

Tumor-initiating stem cells (TSCs) are critical for drug resistance and immune escape. However, the mutual regulations between TSC and tumor microenvironment (TME) remain unclear. Using DNA-label retaining, single-cell RNA sequencing (scRNA-seq), and other approaches, we investigated intestinal adenoma in response to chemoradiotherapy (CRT), thus identifying therapy-resistant TSCs (TrTSCs). We find bidirectional crosstalk between TSCs and TME using CellPhoneDB analysis. An intriguing finding is that TSCs shape TME into a landscape that favors TSCs for immunosuppression and propagation. Using adenoma-organoid co-cultures, niche-cell depletion, and lineaging tracing, we characterize a functional role of cyclooxygenase-2 (Cox-2)-dependent signaling, predominantly occurring between tumor-associated monocytes and macrophages (TAMMs) and TrTSCs. We show that TAMMs promote TrTSC proliferation through prostaglandin E2 (PGE2)-PTGER4(EP4) signaling, which enhances ß-catenin activity via AKT phosphorylation. Thus, our study shows that the bidirectional crosstalk between TrTSC and TME results in a pro-tumorigenic and immunosuppressive contexture.


Asunto(s)
Carcinogénesis/patología , Forma de la Célula/fisiología , Células Madre Neoplásicas/patología , Microambiente Tumoral/fisiología , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Humanos , Intestinos/metabolismo , Ratones , Organoides/metabolismo
14.
Genetics ; 182(1): 25-32, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19307605

RESUMEN

Next-generation methods for rapid whole-genome sequencing enable the identification of single-base-pair mutations in Drosophila by comparing a chromosome bearing a new mutation to the unmutagenized sequence. To validate this approach, we sought to identify the molecular lesion responsible for a recessive EMS-induced mutation affecting egg shell morphology by using Illumina next-generation sequencing. After obtaining sufficient sequence from larvae that were homozygous for either wild-type or mutant chromosomes, we obtained high-quality reads for base pairs composing approximately 70% of the third chromosome of both DNA samples. We verified 103 single-base-pair changes between the two chromosomes. Nine changes were nonsynonymous mutations and two were nonsense mutations. One nonsense mutation was in a gene, encore, whose mutations produce an egg shell phenotype also observed in progeny of homozygous mutant mothers. Complementation analysis revealed that the chromosome carried a new functional allele of encore, demonstrating that one round of next-generation sequencing can identify the causative lesion for a phenotype of interest. This new method of whole-genome sequencing represents great promise for mutant mapping in flies, potentially replacing conventional methods.


Asunto(s)
Drosophila melanogaster/genética , Metanosulfonato de Etilo/farmacología , Estudio de Asociación del Genoma Completo , Genoma , Mutágenos/farmacología , Mutación/efectos de los fármacos , Animales , Mapeo Cromosómico , Análisis Mutacional de ADN , Homocigoto , Polimorfismo de Nucleótido Simple
15.
J Biomol Tech ; 31(2): 47-56, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31966025

RESUMEN

Small RNAs (smRNAs) are important regulators of many biologic processes and are now most frequently characterized using Illumina sequencing. However, although standard RNA sequencing library preparation has become routine in most sequencing facilities, smRNA sequencing library preparation has historically been challenging because of high input requirements, laborious protocols involving gel purifications, inability to automate, and a lack of benchmarking standards. Additionally, studies have suggested that many of these methods are nonlinear and do not accurately reflect the amounts of smRNAs in vivo. Recently, a number of new kits have become available that permit lower input amounts and less laborious, gel-free protocol options. Several of these new kits claim to reduce RNA ligase-dependent sequence bias through novel adapter modifications and to lessen adapter-dimer contamination in the resulting libraries. With the increasing number of smRNA kits available, understanding the relative strengths of each method is crucial for appropriate experimental design. In this study, we systematically compared 9 commercially available smRNA library preparation kits as well as NanoString probe hybridization across multiple study sites. Although several of the new methodologies do reduce the amount of artificially over- and underrepresented microRNAs (miRNAs), we observed that none of the methods was able to remove all of the bias in the library preparation. Identical samples prepared with different methods show highly varied levels of different miRNAs. Even so, many methods excelled in ease of use, lower input requirement, fraction of usable reads, and reproducibility across sites. These differences may help users select the most appropriate methods for their specific question of interest.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/normas , MicroARNs/genética , Análisis de Secuencia de ARN/normas , MicroARNs/aislamiento & purificación , Reproducibilidad de los Resultados , Programas Informáticos
16.
Elife ; 82019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30681411

RESUMEN

Loss of sensory hair cells leads to deafness and balance deficiencies. In contrast to mammalian hair cells, zebrafish ear and lateral line hair cells regenerate from poorly characterized support cells. Equally ill-defined is the gene regulatory network underlying the progression of support cells to differentiated hair cells. scRNA-Seq of lateral line organs uncovered five different support cell types, including quiescent and activated stem cells. Ordering of support cells along a developmental trajectory identified self-renewing cells and genes required for hair cell differentiation. scRNA-Seq analyses of fgf3 mutants, in which hair cell regeneration is increased, demonstrates that Fgf and Notch signaling inhibit proliferation of support cells in parallel by inhibiting Wnt signaling. Our scRNA-Seq analyses set the foundation for mechanistic studies of sensory organ regeneration and is crucial for identifying factors to trigger hair cell production in mammals. The data is searchable and publicly accessible via a web-based interface.


Asunto(s)
Proliferación Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Células Ciliadas Auditivas/citología , ARN Citoplasmático Pequeño/genética , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/metabolismo , Animales , Pez Cebra
18.
Neuron ; 100(5): 1066-1082.e6, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30482691

RESUMEN

In the developing brain, heightened plasticity during the critical period enables the proper formation of neural circuits. Here, we identify the "navigator" neurons, a group of perinatally born olfactory sensory neurons, as playing an essential role in establishing the olfactory map during the critical period. The navigator axons project circuitously in the olfactory bulb and traverse multiple glomeruli before terminating in perspective glomeruli. These neurons undergo a phase of exuberant axon growth and exhibit a shortened lifespan. Single-cell transcriptome analyses reveal distinct molecular signatures for the navigators. Extending their lifespan prolongs the period of exuberant growth and perturbs axon convergence. Conversely, a genetic ablation experiment indicates that, despite postnatal neurogenesis, only the navigators are endowed with the ability to establish a convergent map. The presence and the proper removal of the navigator neurons are both required to establish tight axon convergence into the glomeruli.


Asunto(s)
Axones/fisiología , Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/fisiología , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones Transgénicos , Neurogénesis , Bulbo Olfatorio/metabolismo , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Transcriptoma
19.
G3 (Bethesda) ; 8(10): 3143-3154, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30018084

RESUMEN

Accurate and comprehensive characterization of genetic variation is essential for deciphering the genetic basis of diseases and other phenotypes. A vast amount of genetic variation stems from large-scale sequence changes arising from the duplication, deletion, inversion, and translocation of sequences. In the past 10 years, high-throughput short reads have greatly expanded our ability to assay sequence variation due to single nucleotide polymorphisms. However, a recent de novo assembly of a second Drosophila melanogaster reference genome has revealed that short read genotyping methods miss hundreds of structural variants, including those affecting phenotypes. While genomes assembled using high-coverage long reads can achieve high levels of contiguity and completeness, concerns about cost, errors, and low yield have limited widespread adoption of such sequencing approaches. Here we resequenced the reference strain of D. melanogaster (ISO1) on a single Oxford Nanopore MinION flow cell run for 24 hr. Using only reads longer than 1 kb or with at least 30x coverage, we assembled a highly contiguous de novo genome. The addition of inexpensive paired reads and subsequent scaffolding using an optical map technology achieved an assembly with completeness and contiguity comparable to the D. melanogaster reference assembly. Comparison of our assembly to the reference assembly of ISO1 uncovered a number of structural variants (SVs), including novel LTR transposable element insertions and duplications affecting genes with developmental, behavioral, and metabolic functions. Collectively, these SVs provide a snapshot of the dynamics of genome evolution. Furthermore, our assembly and comparison to the D. melanogaster reference genome demonstrates that high-quality de novo assembly of reference genomes and comprehensive variant discovery using such assemblies are now possible by a single lab for under $1,000 (USD).


Asunto(s)
Biología Computacional , Drosophila melanogaster/genética , Genoma de los Insectos , Genómica , Animales , Biología Computacional/métodos , Biblioteca de Genes , Variación Genética , Genoma Mitocondrial , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
20.
Cell Res ; 28(10): 1042, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30150672

RESUMEN

In the initial published version of this article, there was an inadvertent omission from the Acknowledgements that this work was supported by Stowers Institute for Medical Research (SIMR-1004) and NIH National Cancer Institute grant to University of Kansas Cancer Center (P30 CA168524). This omission does not affect the description of the results or the conclusions of this work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA