Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 21(11): e50636, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32893442

RESUMEN

In mammalian interphase nuclei, more than one thousand large genomic regions are positioned at the nuclear lamina (NL). These lamina-associated domains (LADs) are involved in gene regulation and may provide a backbone for the folding of interphase chromosomes. Little is known about the dynamics of LADs during interphase, in particular at the onset of G1 phase and during DNA replication. We developed an antibody-based variant of the DamID technology (named pA-DamID) that allows us to map and visualize genome-NL interactions with high temporal resolution. Application of pA-DamID combined with synchronization and cell sorting experiments reveals that LAD-NL contacts are generally rapidly established early in G1 phase. However, LADs on the distal ~25 Mb of most chromosomes tend to contact the NL first and then gradually detach, while centromere-proximal LADs accumulate gradually at the NL. Furthermore, our data indicate that S-phase chromatin shows transiently increased lamin interactions. These findings highlight a dynamic choreography of LAD-NL contacts during interphase progression and illustrate the usefulness of pA-DamID to study the dynamics of genome compartmentalization.


Asunto(s)
Cromatina , Lámina Nuclear , Animales , Núcleo Celular , Cromatina/genética , Cromosomas , ADN/genética , Interfase/genética , Lámina Nuclear/genética
2.
Mol Cell ; 38(4): 603-13, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20513434

RESUMEN

The three-dimensional organization of chromosomes within the nucleus and its dynamics during differentiation are largely unknown. To visualize this process in molecular detail, we generated high-resolution maps of genome-nuclear lamina interactions during subsequent differentiation of mouse embryonic stem cells via lineage-committed neural precursor cells into terminally differentiated astrocytes. This reveals that a basal chromosome architecture present in embryonic stem cells is cumulatively altered at hundreds of sites during lineage commitment and subsequent terminal differentiation. This remodeling involves both individual transcription units and multigene regions and affects many genes that determine cellular identity. Often, genes that move away from the lamina are concomitantly activated; many others, however, remain inactive yet become unlocked for activation in a next differentiation step. These results suggest that lamina-genome interactions are widely involved in the control of gene expression programs during lineage commitment and terminal differentiation.


Asunto(s)
Diferenciación Celular , Posicionamiento de Cromosoma , Células Madre Embrionarias/citología , Genoma , Lámina Nuclear/metabolismo , Animales , Astrocitos/citología , Linaje de la Célula , Drosophila , Humanos , Ratones , Neuronas/citología
3.
Genome Res ; 23(2): 270-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23124521

RESUMEN

In metazoans, the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes, by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific, while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps, we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover, cLADs are depleted of synteny breakpoints, pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically, the overall sequence conservation is low for cLADs. Instead, cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this "A/T rule" in embryonic stem cells, but not in differentiated cells. This suggests that the A/T rule represents a default positioning mechanism that is locally overruled during lineage commitment. Analysis of paralogs suggests that during evolution changes in A/T content have driven the relocation of genes to and from the nuclear lamina, in tight association with changes in expression level. Taken together, these results reveal that the spatial organization of mammalian genomes is highly conserved and tightly linked to local nucleotide composition.


Asunto(s)
Secuencia Rica en At , Secuencia Conservada , Genoma , Lámina Nuclear/metabolismo , Animales , Caenorhabditis elegans , Secuencia Conservada/genética , Drosophila melanogaster , Células Madre Embrionarias/metabolismo , Humanos , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Ratones , Factor 1 de Transcripción de Unión a Octámeros/metabolismo
4.
Commun Biol ; 7(1): 1135, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271748

RESUMEN

Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated Tyramide Signal Amplification (TSA)-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in human embryonic stem cells (hESCs). Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.


Asunto(s)
Nucléolo Celular , Centrómero , Heterocromatina , Humanos , Heterocromatina/metabolismo , Heterocromatina/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Centrómero/metabolismo , Centrómero/genética , Línea Celular
5.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961445

RESUMEN

Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated TSA-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in hESCs. Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.

6.
Genome Biol ; 23(1): 185, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050765

RESUMEN

BACKGROUND: Lamina-associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina. It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position some LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin invading into the LAD. To test this, we mapped genome-nuclear lamina interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. RESULTS: CTCF and cohesin contribute to a sharp transition in lamina interactions at LAD borders, while LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the lamina and enriched for accessible DNA and active histone modifications. Remarkably, despite lamina positioning being strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization by depletion of the unloading factor WAPL quantitatively affect lamina interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on lamina interactions. CONCLUSIONS: These findings illustrate that CTCF and cohesin are not primary determinants of LAD patterns. Rather, these proteins locally modulate NL interactions.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas , Lámina Nuclear , Animales , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , ADN/metabolismo , Histonas/metabolismo , Ratones , Lámina Nuclear/química , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA