Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Online ; 23(1): 69, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039565

RESUMEN

BACKGROUND: Properly understanding the origin and progression of the thoracic aortic aneurysm (TAA) can help prevent its growth and rupture. For a better understanding of this pathogenesis, the aortic blood flow has to be studied and interpreted in great detail. We can obtain detailed aortic blood flow information using magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion of the aortic wall. METHODS: We performed two different types of simulations-static (rigid wall) and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, we have developed a novel morphing approach based on the radial basis function (RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet with an automatic registration protocol. RESULTS: The simulated RBF-based movement of the aorta matched well with the original 4D-flow MRI geometries. The wall movement was most dominant in the ascending aorta, accompanied by the highest variation of the blood flow patterns. The resulting data indicated significant differences between the dynamic and static simulations, with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear stress and 15.97±43.32% in the oscillatory shear index (for the whole domain). CONCLUSIONS: In conclusion, the RBF-based morphing approach proved to be numerically accurate and computationally efficient in capturing complex kinematics of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use in MRI-based CFD simulations in broad population studies. Performing these would bring a better understanding of the onset and growth of TAA.


Asunto(s)
Aorta , Simulación por Computador , Hidrodinámica , Imagen por Resonancia Magnética , Humanos , Aorta/diagnóstico por imagen , Aorta/fisiología , Modelos Cardiovasculares , Hemodinámica , Velocidad del Flujo Sanguíneo , Procesamiento de Imagen Asistido por Computador/métodos , Estrés Mecánico , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/fisiopatología
2.
Biomed Eng Online ; 20(1): 84, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419047

RESUMEN

In this study, we analyzed turbulent flows through a phantom (a 180[Formula: see text] bend with narrowing) at peak systole and a patient-specific coarctation of the aorta (CoA), with a pulsating flow, using magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). For MRI, a 4D-flow MRI is performed using a 3T scanner. For CFD, the standard [Formula: see text], shear stress transport [Formula: see text], and Reynolds stress (RSM) models are applied. A good agreement between measured and simulated velocity is obtained for the phantom, especially for CFD with RSM. The wall shear stress (WSS) shows significant differences between CFD and MRI in absolute values, due to the limited near-wall resolution of MRI. However, normalized WSS shows qualitatively very similar distributions of the local values between MRI and CFD. Finally, a direct comparison between in vivo 4D-flow MRI and CFD with the RSM turbulence model is performed in the CoA. MRI can properly identify regions with locally elevated or suppressed WSS. If the exact values of the WSS are necessary, CFD is the preferred method. For future applications, we recommend the use of the combined MRI/CFD method for analysis and evaluation of the local flow patterns and WSS in the aorta.


Asunto(s)
Coartación Aórtica , Coartación Aórtica/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Hidrodinámica , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Estrés Mecánico
3.
R Soc Open Sci ; 10(1): 220645, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636311

RESUMEN

A long-time exposure to lack of oxygen (hypoxia) in some regions of the cerebrovascular system is believed to be one of the causes of cerebral neurological diseases. In the present study, we show how a combination of magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) can provide a non-invasive alternative for studying blood flow and transport of oxygen within the cerebral vasculature. We perform computer simulations of oxygen mass transfer in the subject-specific geometry of the circle of Willis. The computational domain and boundary conditions are based on four-dimensional (4D)-flow MRI measurements. Two different oxygen mass transfer models are considered: passive (where oxygen is treated as a dilute chemical species in plasma) and active (where oxygen is bonded to haemoglobin) models. We show that neglecting haemoglobin transport results in a significant underestimation of the arterial wall mass transfer of oxygen. We identified the hypoxic regions along the arterial walls by introducing the critical thresholds that are obtained by comparison of the estimated range of Damköhler number (Da ⊂ 〈9; 57〉) with the local Sherwood number. Finally, we recommend additional validations of the combined MRI/CFD approach proposed here for larger groups of subject- or patient-specific brain vasculature systems.

4.
Comput Biol Med ; 160: 106925, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37141651

RESUMEN

There is a pressing need to establish novel biomarkers to predict the progression of thoracic aortic aneurysm (TAA) dilatation. Aside from hemodynamics, the roles of oxygen (O2) and nitric oxide (NO) in TAA pathogenesis are potentially significant. As such, it is imperative to comprehend the relationship between aneurysm presence and species distribution in both the lumen and aortic wall. Given the limitations of existing imaging methods, we propose the use of patient-specific computational fluid dynamics (CFD) to explore this relationship. We have performed CFD simulations of O2 and NO mass transfer in the lumen and aortic wall for two cases: a healthy control (HC) and a patient with TAA, both acquired using 4D-flow magnetic resonance imaging (MRI). The mass transfer of O2 was based on active transport by hemoglobin, while the local variations of the wall shear stress (WSS) drove NO production. Comparing hemodynamic properties, the time-averaged WSS was considerably lower for TAA, while the oscillatory shear index and endothelial cell activation potential were notably elevated. O2 and NO showed a non-uniform distribution within the lumen and an inverse correlation between the two species. We identified several locations of hypoxic regions for both cases due to lumen-side mass transfer limitations. In the wall, NO varied spatially, with a clear distinction between TAA and HC. In conclusion, the hemodynamics and mass transfer of NO in the aorta exhibit the potential to serve as a diagnostic biomarker for TAA. Furthermore, hypoxia may provide additional insights into the onset of other aortic pathologies.


Asunto(s)
Aneurisma de la Aorta Torácica , Aneurisma de la Aorta , Humanos , Óxido Nítrico , Hidrodinámica , Aneurisma de la Aorta/patología , Aorta/patología , Hemodinámica , Aneurisma de la Aorta Torácica/patología , Oxígeno , Estrés Mecánico , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo/fisiología
5.
Cardiovasc Eng Technol ; 13(3): 428-442, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34750782

RESUMEN

INTRODUCTION: Wall shear stress (WSS) is associated with the growth and rupture of an intracranial aneurysm. To reveal their underlying connections, many image-based computational fluid dynamics (CFD) studies have been conducted. However, the methodological validations using both in vivo medical imaging and in vitro optical flow measurements were rarely accompanied in such studies. METHODS: In the present study, we performed a comparative assessment on the hemodynamics of a patient-specific intracranial saccular aneurysm using in vivo 4D Flow MRI, in silico CFD, in vitro stereoscopic and tomographic particle imaging velocimetry (Stereo-PIV and Tomo-PIV) techniques. PIV experiments and CFD were conducted under steady state corresponding to the peak systole of 4D Flow MRI. RESULTS: The results showed that all modalities provided similar flow features and overall surface distribution of WSS. However, a large variation in the absolute WSS values was found. 4D Flow MRI estimated a 2- to 4-fold lower peak WSS (3.99 Pa) and a 1.6- to 2-fold lower mean WSS (0.94 Pa) than Tomo-PIV, Stereo-PIV, and CFD. Bland-Altman plots of WSS showed that the differences between PIV-/CFD-based WSS and 4D Flow MRI-based WSS increase with higher WSS magnitude. Such proportional trend was absent in the Bland-Altman comparison of velocity where the resolutions of PIV and CFD datasets were matched to 4D Flow MRI. We also found that because of superior resolution in the out-of-plane direction, WSS estimation by Tomo-PIV was higher than Stereo-PIV. CONCLUSIONS: Our results indicated that the differences in spatial resolution could be the main contributor to the discrepancies between each modality. The findings of this study suggest that with current techniques, care should be taken when using absolute WSS values to perform a quantitative risk analysis of aneurysm rupture.


Asunto(s)
Aneurisma Intracraneal , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Hidrodinámica , Aneurisma Intracraneal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estrés Mecánico
6.
Comput Biol Med ; 133: 104385, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894502

RESUMEN

Aortic aneurysm is associated with aberrant blood flow and wall shear stress (WSS). This can be studied by coupling magnetic resonance imaging (MRI) with computational fluid dynamics (CFD). For patient-specific simulations, extra attention should be given to the variation in segmentation of the MRI data-set and its effect on WSS. We performed CFD simulations of blood flow in the aorta for ten different volunteers and provided corresponding WSS distributions. The aorta of each volunteer was segmented four times. The same inlet and outlet boundary conditions were applied for all segmentation variations of each volunteer. Steady-state CFD simulations were performed with inlet flow based on phase-contrast MRI during peak systole. We show that the commonly used comparison of mean and maximal values of WSS, based on CFD in the different segments of the thoracic aorta, yields good to excellent correlation (0.78-0.95) for rescan and moderate to excellent correlation (0.64-1.00) for intra- and interobserver reproducibility. However, the effect of geometrical variations is higher for the voxel-to-voxel comparison of WSS. With this analysis method, the correlation for different segments of the whole aorta is poor to moderate (0.43-0.66) for rescan and poor to good (0.48-0.73) for intra- and interobserver reproducibility. Therefore, we advise being critical about the CFD results based on the MRI segmentations to avoid possible misinterpretation. While the global values of WSS are similar for different modalities, the variation of results is high when considering the local distributions.


Asunto(s)
Aorta Torácica , Hidrodinámica , Aorta Torácica/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Reproducibilidad de los Resultados , Resistencia al Corte , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA