Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Exp Biol ; 226(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942639

RESUMEN

Ocean acidification (OA), a consequence of the increase in anthropogenic emissions of carbon dioxide, causes major changes in the chemistry of carbonates in the ocean with deleterious effects on calcifying organisms. The pH/PCO2 range to which species are exposed in nature is important to consider when interpreting the response of coastal organisms to OA. In this context, emerging approaches, which assess the reaction norms of organisms to a wide pH gradient, are improving our understanding of tolerance thresholds and acclimation potential to OA. In this study, we deciphered the reaction norms of two oyster species living in contrasting habitats: the intertidal oyster Crassostrea gigas and the subtidal flat oyster Ostrea edulis, which are two economically and ecologically valuable species in temperate ecosystems. Six-month-old oysters of each species were exposed in common garden tanks for 48 days to a pH gradient ranging from 7.7 to 6.4 (total scale). Both species were tolerant down to a pH of 6.6 with high plasticity in fitness-related traits such as survival and growth. However, oysters underwent remodelling of membrane fatty acids to cope with decreasing pH along with shell bleaching impairing shell integrity and consequently animal fitness. Finally, our work revealed species-specific physiological responses and highlights that intertidal C. gigas seem to have a better acclimation potential to rapid and extreme OA changes than O. edulis. Overall, our study provides important data about the phenotypic plasticity and its limits in two oyster species, which is essential for assessing the challenges posed to marine organisms by OA.


Asunto(s)
Crassostrea , Agua de Mar , Animales , Agua de Mar/química , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Crassostrea/fisiología , Dióxido de Carbono
2.
Biol Lett ; 19(8): 20230185, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37582403

RESUMEN

Ocean acidification caused by anthropogenic carbon dioxide emissions alters the growth of marine calcifiers. Although the immediate effects of acidification from global ocean models have been well studied on calcifiers, their recovery capacity over a wide range of pH has never been evaluated. This aspect is crucial because acidification events that arise in coastal areas can far exceed global ocean predictions. However, such acidification events could occur transiently, allowing for recovery periods during which the effects on growth would be compensated, maintained or amplified. Here we evaluated the recovery capacity of a model calcifier, the Pacific oyster Crassostrea gigas. We exposed juveniles to 15 pH conditions between 6.4 and 7.8 for 14 days. Oyster growth was retarded below pH 7.1 while shells were corroded at pH 6.5. We then placed the oysters under ambient pH > 7.8 for 42 days. Growth retardation persisted at pH levels below pH 7.1 even after the stress was removed. However, despite persistent retardation, growth has resumed rapidly suggesting that the oysters can recover from extreme acidification. Yet we found that the differences in individual weight between pH conditions below 7.1 increased over time, and thus the growth retardation cannot be compensated and may affect the fitness of the bivalves.


Asunto(s)
Crassostrea , Agua de Mar , Animales , Concentración de Iones de Hidrógeno , Dióxido de Carbono , Trastornos del Crecimiento
3.
Microb Ecol ; 85(1): 288-297, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35066615

RESUMEN

The Manila clam (Ruditapes philippinarum) is the second most exploited bivalve in the world but remains threatened by diseases and global changes. Their associated microbiota play a key role in their fitness and acclimation capacities. This study aimed at better understanding the behavior of clam digestive glands and extrapallial fluids microbiota at small, but contrasting spatial and temporal scales. Results showed that environmental variations impacted clam microbiota differently according to the considered tissue. Each clam tissue presented its own microbiota and showed different dynamics according to the intertidal position and sampling period. Extrapallial fluids microbiota was modified more rapidly than digestive glands microbiota, for clams placed on the upper and lower intertidal position, respectively. Clam tissues could be considered as different microhabitats for bacteria as they presented different responses to small-scale temporal and spatial variabilities in natural conditions. These differences underlined a more stringent environmental filter capacity of the digestive glands.


Asunto(s)
Bivalvos , Microbiota , Animales , Bivalvos/microbiología
4.
Glob Chang Biol ; 28(10): 3333-3348, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35092108

RESUMEN

Studies on the impact of ocean acidification on marine organisms involve exposing organisms to future acidification scenarios, which has limited relevance for coastal calcifiers living in a mosaic of habitats. Identification of tipping points beyond which detrimental effects are observed is a widely generalizable proxy of acidification susceptibility at the population level. This approach is limited to a handful of studies that focus on only a few macro-physiological traits, thus overlooking the whole organism response. Here we develop a framework to analyze the broad macro-physiological and molecular responses over a wide pH range in juvenile oyster. We identify low tipping points for physiological traits at pH 7.3-6.9 that coincide with a major reshuffling in membrane lipids and transcriptome. In contrast, a drop in pH affects shell parameters above tipping points, likely impacting animal fitness. These findings were made possible by the development of an innovative methodology to synthesize and identify the main patterns of variations in large -omic data sets, fitting them to pH and identifying molecular tipping points. We propose the broad application of our framework to the assessment of effects of global change on other organisms.


Asunto(s)
Dióxido de Carbono , Agua de Mar , Animales , Dióxido de Carbono/química , Ecosistema , Concentración de Iones de Hidrógeno , Agua de Mar/química , Transcriptoma
5.
J Anim Ecol ; 91(4): 805-818, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35137405

RESUMEN

A growing awareness of role that microbiota can play in mediating the effects of pathogens on hosts has given rise to the concept of the pathobiome. Recently, we demonstrated that the Pacific oyster mortality syndrome affecting Crassostrea gigas oysters is caused by infection with the Ostreid herpesvirus type 1 (OsHV-1) followed by infection with multiple bacterial taxa. Here we extend the concept of this pathobiome beyond the host species and its bacterial microbiota by investigating how seaweed living in association with oysters influences their response to the disease. We hypothesized that by their mere presence in the environment, different species of seaweeds can positively or negatively influence the risk of disease in oysters by shaping their bacterial microbiota and their immune response. Although seaweed and oysters do not have direct ecological interactions, they are connected by seawater and likely share microbes. To test our hypothesis, oysters were acclimated with green, brown or red algae for 2 weeks and then challenged with OsHV-1. We monitored host survival and pathogen proliferation and performed bacterial microbiota and transcriptome analyses. We found that seaweeds can alter the bacterial microbiota of the host and its response to the disease. More particularly, green algae belonging to the genus Ulva spp. induced bacterial microbiota dysbiosis in oyster and modification of its transcriptional immune response leading to increased susceptibility to the disease. This work provides a better understanding of a marine disease and highlights the importance of considering both macrobiotic and microbiotic interactions for conservation, management and exploitation of marine ecosystems and resources.


Asunto(s)
Crassostrea , Microbiota , Algas Marinas , Animales , Crassostrea/microbiología , Susceptibilidad a Enfermedades , Agua de Mar
6.
J Anim Ecol ; 91(6): 1196-1208, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35435257

RESUMEN

Ocean warming challenges marine organisms' resilience, especially for species experiencing temperatures close to their upper thermal limits. A potential increase in thermal tolerance might significantly reduce the risk of population decline, which is intrinsically linked to variability in local habitat temperatures. Our goal was to assess the plastic and genetic potential of response to elevated temperatures in a tropical bivalve model, Pinctada margaritifera. We benefit from two ecotypes for which local environmental conditions are characterized by either large diurnal variations in the tide pools (Marquesas archipelago) or low mean temperature with stable to moderate seasonal variations (Gambier archipelago). We explored the physiological basis of individual responses to elevated temperature, genetic divergence as well as plasticity and acclimation by combining lipidomic and transcriptomic approaches. We show that P. margaritifera has certain capacities to adjust to long-term elevated temperatures that was thus far largely underestimated. Genetic variation across populations overlaps with gene expression and involves the mitochondrial respiration machinery, a central physiological process that contributes to species thermal sensitivity and their distribution ranges. Our results present evidence for acclimation potential in P. margaritifera and urge for longer term studies to assess populations resilience in the face of climate change.


Le réchauffement des océans remet en question la résilience des organismes marins, en particulier pour les espèces connaissant des températures proches de leurs limites thermiques supérieures. Une augmentation potentielle de la tolérance thermique pourrait ainsi réduire considérablement le risque de déclin de la population. L'objectif de cette étude était d'évaluer le potentiel plastique et génétique de la réponse à l'exposition courte et chronique à températures élevées chez une espèce de bivalve tropical, Pinctada margaritifera. Ce modèle bénéficie de l'existence de deux écotypes pour lesquels les conditions environnementales locales sont caractérisées soit par de fortes variations diurnes associées aux marées (archipel des Marquises) soit par une température moyenne plus basse et des variations saisonnières prononcées (archipel des Gambier). Nous avons exploré les bases physiologiques des réponses individuelles ainsi que la divergence génétique et quantifié la plasticité en combinant des approches lipidomique et transcriptomique. Nous montrons que P. margaritifera possède des capacités d'acclimatation à des températures élevées sur le long terme jusqu'à présent largement sous-estimées. La divergence génétique entre populations est par ailleurs associée à des différences d'expression des gènes et implique la machinerie respiratoire mitochondriale, un processus physiologique central qui contribue à la sensibilité thermique des espèces et à leurs répartitions. Nos résultats présentent les bases des potentiels d'acclimatation chez P. margaritifera et soulignent l'importance d'études à plus long terme pour évaluer la résilience des populations face au changement climatique.


Asunto(s)
Bivalvos , Ácidos Grasos , Aclimatación/fisiología , Animales , Bivalvos/genética , Cambio Climático , Expresión Génica , Variación Genética , Temperatura
7.
J Exp Biol ; 223(Pt 20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32816959

RESUMEN

Of all environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to pathogens in ectothermic animals. In France, massive mortality of Pacific oysters, Crassostrea gigas, caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to the apoptotic process, synaptic signaling and protein processes at 29°C. Concomitantly, the expression of genes associated with catabolism, metabolite transport, macromolecule synthesis and cell growth remained low from the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate host-pathogen interactions.


Asunto(s)
Crassostrea , Herpesviridae , Animales , Crassostrea/genética , Francia , Herpesviridae/genética , Temperatura , Transcriptoma
8.
J Exp Biol ; 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34005719

RESUMEN

Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.

9.
Environ Microbiol ; 21(12): 4548-4562, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31325353

RESUMEN

Infectious agents such as the bacteria Vibrio aestuarianus or Ostreid herpesvirus 1 have been repeatedly associated with dramatic disease outbreaks of Crassostrea gigas beds in Europe. Beside roles played by these pathogens, microbial infections in C. gigas may derive from the contribution of a larger number of microorganisms than previously thought, according to an emerging view supporting the polymicrobial nature of bivalve diseases. In this study, the microbial communities associated with a large number of C. gigas samples collected during recurrent mortality episodes at different European sites were investigated by real-time PCR and 16SrRNA gene-based microbial profiling. A new target enrichment next-generation sequencing protocol for selective capturing of 884 phylogenetic and virulence markers of the potential microbial pathogenic community in oyster tissue was developed allowing high taxonomic resolution analysis of the bivalve pathobiota. Comparative analysis of contrasting C. gigas samples conducted using these methods revealed that oyster experiencing mortality outbreaks displayed signs of microbiota disruption associated with the presence of previously undetected potential pathogenic microbial species mostly belonging to genus Vibrio and Arcobacter. The role of these species and their consortia should be targeted by future studies aiming to shed light on mechanisms underlying polymicrobial infections in C. gigas.


Asunto(s)
Bacterias/aislamiento & purificación , Crassostrea/microbiología , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/aislamiento & purificación , Europa (Continente) , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , Tipificación Molecular , Filogenia , ARN Bacteriano , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa , Vibrio/genética , Vibrio/aislamiento & purificación , Virulencia/genética
10.
J Exp Biol ; 222(Pt 17)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31439650

RESUMEN

Food provisioning influences disease risk and outcome in animal populations in two ways. On the one hand, unrestricted food supply improves the physiological condition of the host and lowers its susceptibility to infectious disease, reflecting a trade-off between immunity and other fitness-related functions. On the other hand, food scarcity limits the resources available to the pathogen and slows the growth and metabolism of the host on which the pathogen depends to proliferate. Here, we investigated how food availability, growth rate and energetic reserves drive the outcome of a viral disease affecting an ecologically relevant model host, the Pacific oyster, Crassostrea gigas We selected fast- and slow-growing animals, and we exposed them to high and low food rations. We evaluated their energetic reserves, challenged them with a pathogenic virus, monitored daily survival and developed a mortality risk model. Although high food levels and oyster growth were associated with a higher risk of mortality, energy reserves were associated with a lower risk. Food availability acts both as an enabling factor for mortality by increasing oyster growth and as a limiting factor by increasing their energy reserves. This study clarifies how food resources have an impact on susceptibility to disease and indicates how the host's physiological condition could mitigate epidemics. Practically, we suggest that growth should be optimized rather than maximized, considering that trade-offs occur with disease resistance or tolerance.


Asunto(s)
Crassostrea/fisiología , Virus ADN/fisiología , Interacciones Huésped-Patógeno , Animales , Crassostrea/crecimiento & desarrollo , Crassostrea/virología , Dieta
11.
Dis Aquat Organ ; 135(2): 97-106, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31342911

RESUMEN

The Pacific oyster Crassostrea gigas is currently being impacted by a polymicrobial disease that involves early viral infection by ostreid herpesvirus-1 (OsHV-1) followed by a secondary bacterial infection leading to death. A widely used method of inducing infection consists of placing specific pathogen-free oysters ('recipients') in cohabitation in the laboratory with diseased oysters that were naturally infected in the field ('donors'). With this method, we evaluated the temporal dynamics of pathogen release in seawater and the cohabitation time necessary for disease transmission and expression. We showed that OsHV-1 and Vibrio spp. in the seawater peaked concomitantly during the first 48 h and decreased thereafter. We found that 1.5 h of cohabitation with donors was enough time to transmit pathogens to recipients and to induce mortality later, reflecting the highly contagious nature of the disease. Finally, mortality of recipients was associated with increasing cohabitation time with donors until reaching a plateau at 20%. This reflects the cumulative effect of exposure to pathogens. The optimal cohabitation time was 5-6 d, the mortality of recipients occurring 1-2 d earlier.


Asunto(s)
Herpesviridae , Vibrio , Animales , Crassostrea , ADN Viral , Agua de Mar
12.
Fish Shellfish Immunol ; 80: 71-79, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29859311

RESUMEN

Temperature triggers marine diseases by changing host susceptibility and pathogen virulence. Oyster mortalities associated with the Ostreid herpesvirus type 1 (OsHV-1) have occurred seasonally in Europe when the seawater temperature range reaches 16-24 °C. Here we assess how temperature modulates oyster susceptibility to OsHV-1 and pathogen virulence. Oysters were injected with OsHV-1 suspension incubated at 21 °C, 26 °C and 29 °C and were placed in cohabitation with healthy oysters (recipients) at these three temperatures according to a fractional factorial design. Survival was followed for 14 d and recipients were sampled for OsHV-1 DNA quantification and viral gene expression. The oysters were all subsequently placed at 21 °C to evaluate the potential for virus reactivation, before being transferred to oyster farms to evaluate their long-term susceptibility to the disease. Survival of recipients at 29 °C (86%) was higher than at 21 °C (52%) and 26 °C (43%). High temperature (29 °C) decreased the susceptibility of oysters to OsHV-1 without altering virus infectivity and virulence. At 26 °C, the virulence of OsHV-1 was enhanced. Differences in survival persisted when the recipients were all placed at 21 °C, suggesting that OsHV-1 did not reactivate. Additional oyster mortality followed the field transfer, but the overall survival of oysters infected at 29 °C remained higher.


Asunto(s)
Crassostrea/inmunología , Crassostrea/virología , Virus ADN/patogenicidad , Susceptibilidad a Enfermedades , Temperatura , Animales , Virus ADN/genética , ADN Viral/análisis , Femenino , Expresión Génica , Infecciones por Herpesviridae/veterinaria , Masculino , Virulencia
13.
Fish Shellfish Immunol ; 77: 156-163, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29567138

RESUMEN

Since 2008, juvenile Crassostrea gigas oysters have suffered from massive mortalities in European farming areas. This disease of complex etiology is still incompletely understood. Triggered by an elevated seawater temperature, it has been associated to infections by a herpes virus named OsHV-1 as well as pathogenic vibrios of the Splendidus clade. Ruling out the complexity of the disease, most of our current knowledge has been acquired in controlled experiments. Among the many unsolved questions, it is still ignored what role immunity plays in the capacity oysters have to survive an infectious episode. Here we show that juvenile oysters susceptible to the disease mount an inefficient immune response associated with microbial permissiveness and death. We found that, in contrast to resistant adult oysters having survived an earlier episode of mortality, susceptible juvenile oysters never exposed to infectious episodes died by more than 90% in a field experiment. Susceptible oysters were heavily colonized by OsHV-1 herpes virus as well as bacteria including vibrios potentially pathogenic for oysters, which proliferated in oyster flesh and body fluids during the mortality event. Nonetheless, susceptible oysters were found to sense microbes as indicated by an overexpression of immune receptors and immune signaling pathways. However, they did not express important immune effectors involved in antimicrobial immunity and apoptosis and showed repressed expression of genes involved in ROS and metal homeostasis. This contrasted with resistant oysters, which expressed those important effectors, controlled bacterial and viral colonization and showed 100% survival to the mortality event. Altogether, our results demonstrate that the immune response mounted by susceptible oysters lacks some important immune functions and fails in controlling microbial proliferation. This study opens the way to more holistic studies on the "mass mortality syndrome", which are now required to decipher the sequence of events leading to oyster mortalities and determine the relative weight of pathogens, oyster genetics and oyster-associated microbiota in the disease.


Asunto(s)
Crassostrea/inmunología , Inmunidad Innata , Animales , Crassostrea/microbiología , Crassostrea/virología , Francia , Herpesviridae/fisiología , Agua de Mar , Temperatura , Vibrio/fisiología
14.
Chem Res Toxicol ; 28(9): 1831-41, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26313537

RESUMEN

Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 µg/L), isoproturon (0.1 and 1 µg/L), or both in a mixture (0.2 and 0.1 µg/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase α (AMPKα), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was up-regulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.


Asunto(s)
Antioxidantes/metabolismo , Metabolismo Energético/efectos de los fármacos , Ostreidae/efectos de los fármacos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adenilato Quinasa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Ostreidae/metabolismo
15.
Fish Shellfish Immunol ; 42(1): 16-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25449703

RESUMEN

Manila clams, Venerupis philippinarum (Adams and Reeve, 1850), were experimentally challenged with two Vibrio tapetis strains: CECT4600T, the causative agent of Brown Ring Disease (BRD); and LP2 supposedly non-pathogenic in V. philippinarum. Changes in phenoloxidase (PO) and superoxide dismutase (SOD), two major enzymes involved in immunity, were studied in two tissues, the mantle and hemolymph for 30 days after infection in the extrapallial cavity. Bacterial infection in V. philippinarum resulted in modulation of PO and SOD activities that was both tissue- and time-dependent. A response at early times was detected in the mantle and was associated with significant increases in PO and SOD activities in LP2- and CECT4600T-challenged clams 36 h post injection. This first response in the mantle could be explained by the proximity to the injection region (extrapallial cavity). In the hemolymph the response occurred at later times and was associated with an increase in PO activity and a decrease in SOD activity. As hemolymph is a circulating fluid, this response delay could be due to an "integration time" needed by the organism to counteract the infection. Injections also impacted PO and SOD activities in both tissues and confirmed a difference in pathogenicity between the two V. tapetis strains.


Asunto(s)
Bivalvos/enzimología , Bivalvos/inmunología , Bivalvos/microbiología , Monofenol Monooxigenasa/inmunología , Superóxido Dismutasa/inmunología , Vibrio/inmunología , Animales , Proteínas de Artrópodos , Hemolinfa/inmunología , Oligopéptidos , Factores de Tiempo , Vibrio/patogenicidad
16.
Can J Microbiol ; 59(3): 189-96, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23540337

RESUMEN

Rotifers (Brachionus plicatilis), commonly used at first feeding in commercial fish hatcheries, carry a large bacteria load. Because they are relatively poor in essential fatty acids, it is common practice to enrich them with fatty acids, including arachidonic acid (AA). This study aims to determine whether prey enrichment with AA may act as a prebiotic and modify the microbial community composition either in AA-enriched rotifer cultures or in larval-rearing water using winter flounder (Pseudopleuronectes americanus) as a larval fish model. AA enrichment modified the bacterial community composition in both the rotifer culture tanks and the larval-rearing tanks. We observed an increase in the number of cultivable bacteria on TCBS (thiosulfate-citrate-bile salts-sucrose) agar, used as a proxy for the abundance of Vibrio sp. The results suggest that AA may also play an indirect role in larval health.


Asunto(s)
Ácido Araquidónico/farmacología , Bacterias/efectos de los fármacos , Lenguado/crecimiento & desarrollo , Rotíferos/efectos de los fármacos , Animales , Bacterias/crecimiento & desarrollo , Ácidos Grasos/análisis , Lenguado/microbiología , Larva/microbiología , Rotíferos/química , Rotíferos/microbiología , Agua de Mar/microbiología
17.
Mar Pollut Bull ; 194(Pt B): 115318, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37542925

RESUMEN

Multifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health. These variables concerned fish lipid reserves, somatic structure, inorganic contaminant loads, and individual trophic and stress response levels. This modelling approach allowed explaining 30 % of the variance within these 46 variables considered. More importantly, 54 % of fish stress response was explained by the dependent lagoon features, fish age, fish diet, fish reserve, fish structure and fish contaminant load latent variables included in our model. This integrative study sheds light on how individuals deal with contrasting environments and multiple ecological pressures.


Asunto(s)
Dorada , Animales , Estado Nutricional , Dieta , Ecosistema
18.
Mar Environ Res ; 191: 106149, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37611374

RESUMEN

In intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly. Individuals at the upper range limit produced energy more efficiently, as seen by steeper metabolic reactive norms and unaltered ATP levels despite reduced mitochondrial density. By spending most of their time emerged, oysters mounted an antioxidant shielding concomitant with lower levels of pro-oxidant proteins and postponed age-related telomere attrition. Instead, individuals exposed at the lower limit range near subtidal conditions showed lower energy efficiencies, greater oxidative stress and shorter telomere length. These results unraveled the extended acclimatization strategies and the physiological costs of living too fast in subtidal conditions for an intertidal species.

19.
Ecology ; 93(8): 1922-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22928420

RESUMEN

We considered Cushing's match/mismatch theory in a heterotrophic environment and hypothesized that settlement and recruitment success in blue mussel are higher when the food supply is rich in polyunsaturated and essential fatty acids (PUFA/EFA). To test this hypothesis, we monitored larval development as well as fatty acid composition in trophic resources during two successive reproductive seasons. The decoupling we found between the presence of competent larvae in the water column and settlement rates strongly suggests that metamorphosis is delayed until conditions are suitable. In both years, the major mussel settlement peak was synchronized with a phytoplanktonic pulse rich in EFA, consisting of a large autotrophic bloom in 2007 and a short but substantial peak of picoeukaryotes in 2008. These results suggest a "trophic settlement trigger" that indirectly affects recruitment by strongly improving the settlement rate. Despite similar larval settlement rates during both years, the lower 2007 recruitment likely resulted from a mismatch with a high lipid-quality trophic resource. The seasonal trophic conditions differed greatly between the two years, with fatty acids profiles reflecting heterotrophic plankton production in 2007 and mostly autotrophic production in 2008. In agreement with Cushing's theory, our results highlight a match/mismatch, related to the food lipid quality rather than food quantity. For the first time, we show that the recruitment in marine bivalves may be dependent on phytoplanktonic pulses characterized by high levels of PUFA.


Asunto(s)
Mytilus edulis/fisiología , Animales , Ecosistema , Conducta Alimentaria , Larva/fisiología , Dinámica Poblacional , Quebec , Estaciones del Año , Factores de Tiempo
20.
Mar Environ Res ; 180: 105709, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35988349

RESUMEN

The Pacific oyster Crassostrea gigas is established in the marine intertidal zone, experiencing rapid and highly dynamic environmental changes throughout the tidal cycle. Depending on the bathymetry, oysters face oxygen deprivation, lack of nutrients, and high changes in temperature during alternation of the cycles of emersion/immersion. Here we showed that intertidal oysters at a bathymetry level of 3 and 5 m delayed by ten days the onset of mortality associated with Pacific Oyster Mortality Syndrome (POMS) as compared to subtidal oysters. Intertidal oysters presented a lower growth but similar energetic reserves to subtidal oysters but induced proteomic changes indicative of a boost in metabolism, inflammation, and innate immunity that may have improved their resistance during infection with the Ostreid herpes virus. Our work highlights that intertidal harsh environmental conditions modify host-pathogen interaction and improve oyster health. This study opens new perspectives on oyster farming for mitigation strategies based on tidal height.


Asunto(s)
Crassostrea , Herpesviridae , Animales , Interacciones Huésped-Patógeno , Inmunidad Innata , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA