Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Genomics ; 24(1): 139, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944971

RESUMEN

BACKGROUND: Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS: The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFß and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS: Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.


Asunto(s)
Transcriptoma , Irradiación Corporal Total , Animales , Macaca mulatta , Proteoma , Proteómica , Multiómica , Células Sanguíneas , Dosis de Radiación
2.
Cytogenet Genome Res ; 163(3-4): 121-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37793357

RESUMEN

The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.25 Gy and 3.75 Gy, respectively. For both age groups, there was a significant increase in MN yields with increasing dose (p < 0.05) and dose-dependent decrease in the nuclear division index (NDI; p < 0.0001). In the pre-radiotherapy samples, there was a significantly higher NDI measured in the pediatric cohort compared to the adult due to an increase in the percentage of tri- and quadri-nucleated cells scored. Complete blood counts with differential recorded before and after TBI at the 24-h time point showed a rapid increase in neutrophil (p = 0.0001) and decrease in lymphocyte (p = 0.0006) counts, resulting in a highly elevated neutrophil-to-lymphocyte ratio (NLR) of 14.45 ± 1.85 after 3.75 Gy TBI (pre-exposure = 4.62 ± 0.49), indicating a strong systemic inflammatory response. Correlation of the hematological cell subset counts with cytogenetic damage, indicated that only the lymphocyte subset survival fraction (after TBI compared with before TBI) showed a negative correlation with increasing MN frequency from 0 to 1.25 Gy (r = -0.931; p = 0.007). Further, the data presented here indicate that the combination of CBMN assay endpoints (MN frequency and NDI values) and hematology parameters could be used to assess cytogenetic damage and early hematopoietic injury in the peripheral blood of leukemia patients, 24 h after TBI exposure.


Asunto(s)
Leucemia , Irradiación Corporal Total , Adulto , Humanos , Niño , Irradiación Corporal Total/efectos adversos , Pruebas de Micronúcleos/métodos , Citocinesis/genética , Citocinesis/efectos de la radiación , Linfocitos
3.
Cytogenet Genome Res ; 161(6-7): 352-361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34488220

RESUMEN

Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.3 Gy) and X rays (1 Gy). The human dicentric and cytokinesis-block micronucleus assays were performed to measure chromosomal aberrations in human lymphocytes in vivo from the blood and spleen, respectively. The mBAND assay based on fluorescent in situ hybridization labeling was used to detect neutron-induced chromosome 1 inversions in the blood lymphocytes of the neutron-irradiated mice. Cytogenetics endpoints, dicentrics and micronuclei showed that there was no significant difference in yields between the 2 irradiation types at the doses tested, indicating that neutron-induced chromosomal DNA damage in vivo was more biologically effective (RBE ∼3.3) compared to X rays. The mBAND assay, which is considered a specific biomarker of high-LET neutron exposure, confirmed the presence of clustered DNA damage in the neutron-irradiated mice but not in the X-irradiated mice, 24 h after exposure.


Asunto(s)
Citogenética/métodos , Linfocitos/efectos de la radiación , Neutrones , Rayos X , Adulto , Animales , Células Cultivadas , Inversión Cromosómica/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Hibridación Fluorescente in Situ/métodos , Linfocitos/citología , Linfocitos/metabolismo , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Pruebas de Micronúcleos/métodos , Persona de Mediana Edad
4.
Radiat Environ Biophys ; 59(1): 89-98, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31897603

RESUMEN

Environmental contamination and ingestion of the radionuclide Cesium-137 (137Cs) is a large concern in fallout from a nuclear reactor accident or improvised nuclear device, and highlights the need to develop biological assays for low-dose rate, internal emitter radiation. To mimic low-dose rates attributable to fallout, we have developed a VAriable Dose-rate External 137Cs irradiatoR (VADER), which can provide arbitrarily varying and progressive low-dose rate irradiations in the range of 0.1-1.2 Gy/day, while circumventing the complexities of dealing with radioactively contaminated biomaterials. We investigated the kinetics of mouse peripheral leukocytes DNA damage response in vivo after variable, low-dose rate 137Cs exposure. C57BL/6 mice were placed in the VADER over 7 days with total accumulated dose up to 2.7 Gy. Peripheral blood response including the leukocyte depletion, apoptosis as well as its signal protein p53 and DNA repair biomarker γ-H2AX was measured. The results illustrated that blood leukocyte numbers had significantly dropped by day 7. P53 levels peaked at day 2 (total dose = 0.91 Gy) and then declined; whereas, γ-H2AX fluorescence intensity (MFI) and foci number generally increased with accumulated dose and peaked at day 5 (total dose = 2.08 Gy). ROC curve analysis for γ-H2AX provided a good discrimination of accumulated dose < 2 Gy and ≥ 2 Gy, highlighting the potential of γ-H2AX MFI as a biomarker for dosimetry in a protracted, environmental exposure scenario.


Asunto(s)
Radioisótopos de Cesio , Daño del ADN , Histonas/metabolismo , Leucocitos/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Biomarcadores/metabolismo , Reparación del ADN , Recuento de Leucocitos , Leucocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Dosis de Radiación , Proteína p53 Supresora de Tumor/metabolismo
5.
Radiat Prot Dosimetry ; 199(14): 1516-1519, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37721072

RESUMEN

Major nuclear accidents can result in many casualties, and it is important to assess the absorbed radiation dose to support treatment decisions. Biological dosimetry (BD) allows retrospective determination of dose using biological markers. To achieve consistent cytogenetic assay results across labs, the current practice requires each lab to generate periodic, unique calibration curves using in vitro dose-effect experiments. Here, we present CytoRADx™, a standardized biodosimetry system that integrates automated dose calculation in a high-throughput platform without the need for lab-specific calibration curves. CytoRADx consists of an improved, standardized Cytokinesis Block Micronucleus assay combined with automated analysis utilizing an established slide scanning device. We tested CytoRADx for accuracy and reproducibility across different instruments, sites, days and operators. Our results demonstrate that CytoRADx eliminates the time-consuming, lab-specific calibration curves, allowing multiple laboratories to obtain consistent results and to distribute the testing burden in the event of a large-scale accident.


Asunto(s)
Bioensayo , Reproducibilidad de los Resultados , Estudios Retrospectivos , Calibración , Citogenética
6.
Sci Rep ; 11(1): 4022, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597632

RESUMEN

We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0-4 Gy neutrons and 0-15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of "overfitting" was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the data, and measuring performance on the rest. RF achieved the best performance. Mean R2 for actual vs. reconstructed neutron doses over 300 random training/testing splits was 0.869 (range 0.761 to 0.919) and root mean squared error was 0.239 (0.195 to 0.351) Gy. These results demonstrate the promising potential of machine learning to reconstruct the neutron dose component in clinically-relevant complex radiation exposure scenarios.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Linfocitos/efectos de la radiación , Radiometría/métodos , Adulto , Algoritmos , Biología Computacional/métodos , Femenino , Voluntarios Sanos , Humanos , Aprendizaje Automático , Masculino , Pruebas de Micronúcleos/métodos , Neutrones/efectos adversos , Fotones/efectos adversos , Dosis de Radiación , Exposición a la Radiación/efectos adversos
7.
Radiat Res ; 196(5): 523-534, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515768

RESUMEN

In a large-scale catastrophe, such as a nuclear detonation in a major city, it will be crucial to accurately diagnose large numbers of people to direct scarce medical resources to those in greatest need. Currently no FDA-cleared tests are available to diagnose radiation exposures, which can lead to complex, life-threatening injuries. To address this gap, we have achieved substantial advancements in radiation biodosimetry through refinement and adaptation of the cytokinesis-block micronucleus (CBMN) assay as a high throughput, quantitative diagnostic test. The classical CBMN approach, which quantifies micronuclei (MN) resulting from DNA damage, suffers from considerable time and expert labor requirements, in addition to a lack of universal methodology across laboratories. We have developed the CytoRADx™ System to address these drawbacks by implementing a standardized reagent kit, optimized assay protocol, fully automated microscopy and image analysis, and integrated dose prediction. These enhancements allow the CytoRADx System to obtain high-throughput, standardized results without specialized labor or laboratory-specific calibration curves. The CytoRADx System has been optimized for use with both humans and non-human primates (NHP) to quantify radiation dose-dependent formation of micronuclei in lymphocytes, observed using whole blood samples. Cell nuclei and resulting MN are fluorescently stained and preserved on durable microscope slides using materials provided in the kit. Up to 1,000 slides per day are subsequently scanned using the commercially based RADxScan™ Imager with customized software, which automatically quantifies the cellular features and calculates the radiation dose. Using less than 1 mL of blood, irradiated ex vivo, our system has demonstrated accurate and precise measurement of exposures from 0 to 8 Gy (90% of results within 1 Gy of delivered dose). These results were obtained from 636 human samples (24 distinct donors) and 445 NHP samples (30 distinct subjects). The system demonstrated comparable results during in vivo studies, including an investigation of 43 NHPs receiving single-dose total-body irradiation. System performance is repeatable across laboratories, operators, and instruments. Results are also statistically similar across diverse populations, considering various demographics, common medications, medical conditions, and acute injuries associated with radiological disasters. Dose calculations are stable over time as well, providing reproducible results for at least 28 days postirradiation, and for blood specimens collected and stored at room temperature for at least 72 h. The CytoRADx System provides significant advancements in the field of biodosimetry that will enable accurate diagnoses across diverse populations in large-scale emergency scenarios. In addition, our technological enhancements to the well-established CBMN assay provide a pathway for future diagnostic applications, such as toxicology and oncology.


Asunto(s)
Citocinesis , Calibración , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo , Humanos , Pruebas de Micronúcleos , Radiometría
8.
PLoS One ; 15(4): e0228350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32320391

RESUMEN

Dosimetry is an important tool for triage and treatment planning following any radiation exposure accident, and biological dosimetry, which estimates exposure dose using a biological parameter, is a practical means of determining the specific dose an individual receives. The cytokinesis-blocked micronucleus assay (CBMN) is an established biodosimetric tool to measure chromosomal damage in mitogen-stimulated human lymphocytes. The CBMN method is especially valuable for biodosimetry in triage situations thanks to simplicity in scoring and adaptability to high-throughput automated sample processing systems. While this technique produces dose-response data which fit very well to a linear-quadratic model for exposures to low linear energy transfer (LET) radiation and for doses up for 5 Gy, limitations to the accuracy of this method arise at larger doses. Accuracy at higher doses is limited by the number of cells reaching mitosis. Whereas it would be expected that the yield of micronuclei increases with the dose, in many experiments it has been shown to actually decrease when normalized over the total number of cells. This variation from a monotonically increasing dose response poses a limitation for retrospective dose reconstruction. In this study we modified the standard CBMN assay to increase its accuracy following exposures to higher doses of photons or a mixed neutron-photon beam. The assay is modified either through inhibitions of the G2/M and spindle checkpoints with the addition of caffeine and/or ZM447439 (an Aurora kinase inhibitor), respectively to the blood cultures at select times during the assay. Our results showed that caffeine addition improved assay performance for photon up to 10 Gy. This was achieved by extending the assay time from the typical 70 h to just 74 h. Compared to micronuclei yields without inhibitors, addition of caffeine and ZM447439 resulted in improved accuracy in the detection of micronuclei yields up to 10 Gy from photons and 4 Gy of mixed neutrons-photons. When the dose-effect curves were fitted to take into account the turnover phenomenon observed at higher doses, best fitting was achieved when the combination of both inhibitors was used. These techniques permit reliable dose reconstruction after high doses of radiation with a method that can be adapted to high-throughput automated sample processing systems.


Asunto(s)
Citogenética , Dosis de Radiación , Radiometría , Adulto , Benzamidas/farmacología , Cafeína/farmacología , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/efectos de la radiación , Masculino , Pruebas de Micronúcleos , Persona de Mediana Edad , Neutrones , Protones , Quinazolinas/farmacología
9.
Sci Rep ; 10(1): 12716, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728041

RESUMEN

Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarker-based system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure. In the Hu-NSG mice studies, the FAST-DOSE biomarker panel was able to generate delivered dose estimates at days 1, 2 and 3 post exposure, whereas in the NHP studies, the biomarker panel was able to successfully classify samples by dose categories below or above 2 Gy up to 8 days after total body exposure. These results suggest that the FAST-DOSE bioassay has large potential as a useful diagnostic tool for rapid and reliable screening of potentially exposed individuals to aid early triage decisions within the first week post-exposure.


Asunto(s)
Leucocitos Mononucleares/química , Exposición a la Radiación/análisis , Radiometría/métodos , Irradiación Corporal Total/métodos , Animales , Línea Celular , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones SCID , Modelos Animales , Primates , Dosis de Radiación
10.
Sci Rep ; 10(1): 2899, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076014

RESUMEN

Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes. To utilize these differences for biodosimetry, we developed metrics that describe micronuclei distributions in binucleated cells and serve as predictors in machine learning or parametric analyses of the following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X rays vs. various neutron + photon mixtures. The results showed high accuracies of scenario and dose reconstructions. Specifically, receiver operating characteristic curve areas (AUC) for sample classification by exposure type reached 0.931 and 0.916 in scenarios A and B, respectively. R2 for actual vs. reconstructed doses in these scenarios reached 0.87 and 0.77, respectively. These encouraging findings demonstrate a proof-of-principle for the proposed approach of high-throughput reconstruction of clinically-relevant complex radiation exposure scenarios.


Asunto(s)
Neutrones , Exposición a la Radiación , Adulto , Algoritmos , Femenino , Humanos , Aprendizaje Automático , Masculino , Pruebas de Micronúcleos , Persona de Mediana Edad , Fotones , Adulto Joven
11.
Radiat Res ; 191(4): 342-351, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30779694

RESUMEN

The cytokinesis-block micronucleus (CBMN) assay has become a fully-validated and standardized method for radiation biodosimetry. The assay is typically performed using microscopy, which is labor intensive, time consuming and impractical after a large-scale radiological/nuclear event. Imaging flow cytometry (IFC), which combines the statistical power of traditional flow cytometry with the sensitivity and specificity of microscopy, has been recently used to perform the CBMN assay. Since this technology is capable of automated sample acquisition and multi-file analysis, we have integrated IFC into our Rapid Automated Biodosimetry Technology (RABiT-II). Assay development and optimization studies were designed to increase the yield of binucleated cells (BNCs), and improve data acquisition and analysis templates to increase the speed and accuracy of image analysis. Human peripheral blood samples were exposed ex vivo with up to 4 Gy of c rays at a dose rate of 0.73 Gy/min. After irradiation, samples were transferred to microtubes (total volume of 1 ml including blood and media) and organized into a standard 8 × 12 plate format. Sample processing methods were modified by increasing the blood-to-media ratio, adding hypotonic solution prior to cell fixation and optimizing nuclear DRAQ5 staining, leading to an increase of 81% in BNC yield. Modification of the imaging processing algorithms within IFC software also improved BNC and MN identification, and reduced the average time of image analysis by 78%. Finally, 50 ll of irradiated whole blood was cultured with 200 ll of media in 96-well plates. All sample processing steps were performed automatically using the RABiT-II cell: :explorer robotic system adopting the optimized IFC-CBMN assay protocol. The results presented here detail a novel, high-throughput RABiT-IFC CBMN assay that possesses the potential to increase capacity for triage biodosimetry during a large-scale radiological/nuclear event.


Asunto(s)
Citocinesis/efectos de la radiación , Citometría de Flujo , Pruebas de Micronúcleos , Radiometría/métodos , Robótica , Triaje , Adulto , Automatización , Calibración , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Sci Rep ; 8(1): 13557, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202043

RESUMEN

After a radiological incident, there is an urgent need for fast and reliable bioassays to identify radiation-exposed individuals within the first week post exposure. This study aimed to identify candidate radiation-responsive protein biomarkers in human lymphocytes in vivo using humanized NOD scid gamma (Hu-NSG) mouse model. Three days after X-irradiation (0-2 Gy, 88 cGy/min), human CD45+ lymphocytes were collected from the Hu-NSG mouse spleen and quantitative changes in the proteome of the human lymphocytes were analysed by mass spectrometry. Forty-six proteins were differentially expressed in response to radiation exposure. FDXR, BAX, DDB2 and ACTN1 proteins were shown to have dose-dependent response with a fold change greater than 2. When these proteins were used to estimate radiation dose by linear regression, the combination of FDXR, ACTN1 and DDB2 showed the lowest mean absolute errors (≤0.13 Gy) and highest coefficients of determination (R2 = 0.96). Biomarker validation studies were performed in human lymphocytes 3 days after irradiation in vivo and in vitro. In conclusion, this is the first study to identify radiation-induced human protein signatures in vivo using the humanized mouse model and develop a protein panel which could be used for the rapid assessment of absorbed dose 3 days after radiation exposure.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica/efectos de la radiación , Traumatismos por Radiación/diagnóstico , Radiometría/métodos , Rayos X/efectos adversos , Actinina/análisis , Actinina/metabolismo , Animales , Biomarcadores/análisis , Células Cultivadas , Trasplante de Células Madre de Sangre del Cordón Umbilical , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Ferredoxina-NADP Reductasa/análisis , Ferredoxina-NADP Reductasa/metabolismo , Voluntarios Sanos , Humanos , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Cultivo Primario de Células , Proteómica , Traumatismos por Radiación/sangre , Traumatismos por Radiación/orina , Bazo/citología , Quimera por Trasplante , Irradiación Corporal Total , Proteína X Asociada a bcl-2/análisis , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA