Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 16(5): e1008854, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32459805

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1008249.].

2.
PLoS Genet ; 15(8): e1008249, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31437148

RESUMEN

Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Genoma Fúngico , Intrones/genética , Saccharomyces cerevisiae/genética , ARN no Traducido/genética , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/metabolismo
3.
RNA ; 19(5): 627-38, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525800

RESUMEN

Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA ("STAR" motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3' UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.


Asunto(s)
Diferenciación Celular/genética , Proteína de Unión al Tracto de Polipirimidina , Empalme del ARN/genética , Proteínas de Unión al ARN , Regiones no Traducidas 3'/genética , Sitios de Unión , Células Cultivadas , Exones , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células HeLa , Humanos , Intrones , Células Musculares/citología , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Especificidad de Órganos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
J Biomol Screen ; 18(9): 1110-20, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23771823

RESUMEN

The spliceosome is the macromolecular machine responsible for pre-mRNA splicing, an essential step in eukaryotic gene expression. During splicing, myriad subunits join and leave the spliceosome as it works on the pre-mRNA substrate. Strikingly, there are very few small molecules known to interact with the spliceosome. Splicing inhibitors are needed to capture transient spliceosome conformations and probe important functional components. Such compounds may also have chemotherapeutic applications, as links between splicing and cancer are increasingly uncovered. To identify new splicing inhibitors, we developed a high-throughput assay for in vitro splicing using a reverse transcription followed by quantitative PCR readout. In a pilot screen of 3080 compounds, we identified three small molecules that inhibit splicing in HeLa extract by interfering with different stages of human spliceosome assembly. Two of the compounds similarly affect spliceosomes in yeast extracts, suggesting selective targeting of conserved components. By examining related molecules, we identified chemical features required for the activity of two of the splicing inhibitors. In addition to verifying our assay procedure and paving the way to larger screens, these studies establish new compounds as chemical probes for investigating the splicing machinery.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Precursores del ARN/antagonistas & inhibidores , Empalme del ARN/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Empalmosomas/efectos de los fármacos , Células HeLa , Humanos , Reacción en Cadena de la Polimerasa , Precursores del ARN/química , Precursores del ARN/metabolismo , Transcripción Reversa , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Empalmosomas/química , Empalmosomas/metabolismo , Relación Estructura-Actividad
6.
Genes Dev ; 21(7): 811-20, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17403781

RESUMEN

Nuclear pre-messenger RNA (pre-mRNA) splicing requires multiple spliceosomal small nuclear RNA (snRNA) and pre-mRNA rearrangements. Here we reveal a new snRNA conformational switch in which successive roles for two competing U2 helices, stem IIa and stem IIc, promote distinct splicing steps. When stem IIa is stabilized by loss of stem IIc, rapid ATP-independent and Cus2p-insensitive prespliceosome formation occurs. In contrast, hyperstabilized stem IIc improves the first splicing step on aberrant branchpoint pre-mRNAs and rescues temperature-sensitive U6-U57C, a U6 mutation that also suppresses first-step splicing defects of branchpoint mutations. A second, later role for stem IIa is revealed by its suppression of a cold-sensitive allele of the second-step splicing factor PRP16. Our data expose a spliceosomal progression cycle of U2 stem IIa formation, disruption by stem IIc, and then reformation of stem IIa before the second catalytic step. We propose that the competing stem IIa and stem IIc helices are key spliceosomal RNA elements that optimize juxtaposition of the proper reactive sites during splicing.


Asunto(s)
Empalme del ARN , ARN Nuclear Pequeño/química , Empalmosomas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Catálisis , ARN Helicasas DEAD-box/metabolismo , Modelos Biológicos , Mutación , Conformación de Ácido Nucleico , Fenotipo , ARN Helicasas , Precursores del ARN/metabolismo , Factores de Empalme de ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA