Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Autoimmun ; 143: 103159, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141420

RESUMEN

OBJECTIVES: To evaluate the in vitro effect of tofacitinib on autophagy activity of psoriatic arthritis (PsA) fibroblast-like synoviocytes (FLS), and to confirm its activity on inflammatory and invasive properties of FLS and synovial cells, deepening the impact on mitochondrial function. METHODS: FLS, peripheral blood mononuclear cells (PBMCs), and synovial cells from active PsA patients were cultured with tofacitinib 1 µM or vehicle control for 24 h. Autophagy was measured by Western blot and by fluorescence microscopy. Chemokines/cytokines released into culture supernatants were quantified by ELISA, while invasive properties of FLS by migration assays. Specific mitochondrial probes were adopted to measure intracellular reactive oxygen species (ROS), mitochondrial potential, morphology, turnover and mitophagy. Oxygen consumption rate (OCR), reflecting oxidative phosphorylation, was quantified using the Seahorse technology. Differences were determined by adopting the non-parametric Wilcoxon signed rank test. RESULTS: 18 patients with moderately-to-severely active PsA were enrolled. Tofacitinib significantly increased the levels of the autophagy markers LC3-II and ATG7 in PsA FLS compared to vehicle control, suggesting an increase in spontaneous autophagy activity; no effect was highlighted in PBMCs and synovial cells cultures. Tofacitinib reduced migration properties of PsA FLS, and reduced MCP-1 and IL-6 release into FLS and synovial cells cultures supernatants. Furthermore, tofacitinib decreased intracellular ROS production, increased basal OCR, ATP production and maximal respiratory capacity, and enhanced mitophagy and mitochondrial turnover. CONCLUSIONS: The JAK inhibitor tofacitinib reduces the pro-invasive and pro-inflammatory properties of PsA FLS. Autophagy induction and mitochondrial quality control modulation by tofacitinib might contribute to FLS function restoration.


Asunto(s)
Artritis Psoriásica , Piperidinas , Pirimidinas , Sinoviocitos , Humanos , Artritis Psoriásica/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Leucocitos Mononucleares , Transducción de Señal , Autofagia , Fibroblastos/metabolismo , Mitocondrias , Células Cultivadas , Membrana Sinovial/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099564

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.


Asunto(s)
Antipsicóticos/uso terapéutico , Autofagia , Mitofagia , Esclerosis Múltiple/tratamiento farmacológico , Animales , Antipsicóticos/farmacología , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/sangre , Proteínas Relacionadas con la Autofagia/líquido cefalorraquídeo , Axones/efectos de los fármacos , Axones/metabolismo , Biomarcadores/metabolismo , Clozapina/farmacología , Citocinas/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Haloperidol/farmacología , Inflamación/patología , Interleucina-1beta/metabolismo , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Modelos Biológicos , Actividad Motora/efectos de los fármacos , Esclerosis Múltiple/sangre , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/fisiopatología , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
3.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504268

RESUMEN

Although mitochondria play a multifunctional role in cancer progression and Ca2+ signaling is remodeled in a wide variety of tumors, the underlying mechanisms that link mitochondrial Ca2+ homeostasis with malignant tumor formation and growth remain elusive. Here, we show that phosphorylation at the N-terminal region of the mitochondrial calcium uniporter (MCU) regulatory subunit MICU1 leads to a notable increase in the basal mitochondrial Ca2+ levels. A pool of active Akt in the mitochondria is responsible for MICU1 phosphorylation, and mitochondrion-targeted Akt strongly regulates the mitochondrial Ca2+ content. The Akt-mediated phosphorylation impairs MICU1 processing and stability, culminating in reactive oxygen species (ROS) production and tumor progression. Thus, our data reveal the crucial role of the Akt-MICU1 axis in cancer and underscore the strategic importance of the association between aberrant mitochondrial Ca2+ levels and tumor development.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Células HEK293 , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/química , Ratas , Especies Reactivas de Oxígeno/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902437

RESUMEN

The aims of this systematic literature review (SLR) were to identify the effects of approved biological and targeted synthetic disease modifying antirheumatic drugs (b/tsDMARDs) on synovial membrane of psoriatic arthritis (PsA) patients, and to determine the existence of histological/molecular biomarkers of response to therapy. A search was conducted on MEDLINE, Embase, Scopus, and Cochrane Library (PROSPERO:CRD42022304986) to retrieve data on longitudinal change of biomarkers in paired synovial biopsies and in vitro studies. A meta-analysis was conducted by adopting the standardized mean difference (SMD) as a measure of the effect. Twenty-two studies were included (19 longitudinal, 3 in vitro). In longitudinal studies, TNF inhibitors were the most used drugs, while, for in vitro studies, JAK inhibitors or adalimumab/secukinumab were assessed. The main technique used was immunohistochemistry (longitudinal studies). The meta-analysis showed a significant reduction in both CD3+ lymphocytes (SMD -0.85 [95% CI -1.23; -0.47]) and CD68+ macrophages (sublining, sl) (SMD -0.74 [-1.16; -0.32]) in synovial biopsies from patients treated for 4-12 weeks with bDMARDs. Reduction in CD3+ mostly correlated with clinical response. Despite heterogeneity among the biomarkers evaluated, the reduction in CD3+/CD68+sl cells during the first 3 months of treatment with TNF inhibitors represents the most consistent variation reported in the literature.


Asunto(s)
Antirreumáticos , Artritis Psoriásica , Humanos , Artritis Psoriásica/tratamiento farmacológico , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Antirreumáticos/uso terapéutico , Adalimumab/uso terapéutico , Biomarcadores/análisis
5.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012241

RESUMEN

Plant-derived remedies rich in chalcone-based compounds have been known for centuries in the treatment of specific diseases, and nowadays, the fascinating chalcone framework is considered a useful and, above all, abundant natural chemotype. Velutone F, a new chalconoid from Millettia velutina, exhibits a potent effect as an NLRP3-inflammasome inhibitor; the search for new natural/non-natural lead compounds as NLRP3 inhibitors is a current topical subject in medicinal chemistry. The details of our work toward the synthesis of velutone F and the unknown non-natural regioisomers are herein reported. We used different synthetic strategies both for the construction of the distinctive benzofuran nucleus (BF) and for the key phenylpropenone system (PhP). Importantly, we have disclosed a facile entry to the velutone F via synthetic routes that can also be useful for preparing non-natural analogs, a prerequisite for extensive SAR studies on the new flavonoid class of NLRP3-inhibitors.


Asunto(s)
Chalconas , Inflamasomas , Chalconas/farmacología , Flavonoides/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR
6.
Int J Obes (Lond) ; 43(5): 963-973, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30082750

RESUMEN

BACKGROUND/OBJECTIVES: Obesity is a complex disease characterized by the accumulation of excess body fat, which is caused by an increase in adipose cell size and number. The major source of adipocytes comes from mesenchymal stem cells (MSCs), although their roles in obesity remain unclear. An understanding of the mechanisms, regulation, and outcomes of adipogenesis is crucial for the development of new treatments for obesity-related diseases. Recently an unexpected role for the tumor suppressor promyelocytic leukemia protein (PML) in hematopoietic stem cell biology and metabolism regulation has come to light, but its role in MSC biology remains unknown. Here, we investigated the molecular pathway underlying the role of PML in the control of adipogenic MSC differentiation. SUBJECTS/METHODS: Muscle-derived stem cells (MDSCs) and adipose-derived stem cells (ADSCs) obtained from mice and voluntary patients (as a source of MSCs) were cultured in the presence of high glucose (HG) concentration, a nutrient stress condition known to promote MSCs differentiation into mature adipocytes and the adipogenic potential of PML was assessed. RESULTS: PML is essential for a correct HG-dependent adipogenic differentiation, and the enhancement of PML levels is fundamental during adipogenesis. Increased PML expression enables the upregulation of protein kinase Cß (PKCß), which, in turn, by controlling autophagy levels permits an increase in peroxisome proliferator-activated receptor γ (PPARγ) that leads the adipogenic differentiation. Therefore, genetic and pharmacological depletion of PML prevents PKCß expression, and by increasing autophagy levels, impairs the MSCs adipogenic differentiation. Human ADSCs isolated from overweight patients displayed increased PML and PKCß levels compared to those found in normal weight individuals, indicating that the PML-PKCß pathway is directly involved in the enhancement of adipogenesis and human metabolism. CONCLUSIONS: The new link found among PML, PKCß, and autophagy opens new therapeutic avenues for diseases characterized by an imbalance in the MSCs differentiation process, such as metabolic syndromes and cancer.


Asunto(s)
Adipogénesis/fisiología , Autofagia , Diabetes Mellitus Tipo 2/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Obesidad/metabolismo , PPAR gamma/metabolismo , Adipocitos , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glucosa/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados
7.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 858-864, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28064002

RESUMEN

Mitochondria-associated membranes are juxtaposed between the endoplasmic reticulum and mitochondria and have been identified as a critical hub in the regulation of apoptosis and tumor growth. One key function of mitochondria-associated membranes is to provide asylum to a number of proteins with tumor suppressor and oncogenic properties. In this review, we discuss how Ca2+ flux manipulation represents the primary mechanism underlying the action of several oncogenes and tumor-suppressor genes and how these networks might be manipulated to provide novel therapies for cancer. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Animales , Carcinogénesis , Humanos , Transporte Iónico , Neoplasias/patología
8.
Int J Mol Sci ; 18(7)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726733

RESUMEN

Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca 2 + handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Animales , Apoptosis , Transporte Biológico , Membrana Celular/ultraestructura , Susceptibilidad a Enfermedades , Retículo Endoplásmico/ultraestructura , Humanos , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Transporte de Proteínas
9.
Cell Death Dis ; 15(6): 407, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862500

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 ß (IL-1ß) production in keratinocytes. Mechanistically, LZD triggers a reactive oxygen species (ROS)-independent mitochondrial damage that culminates in increased tethering between the endoplasmic reticulum (ER) and mitochondria, which in turn activates the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex by promoting its assembly to the mitochondrial surface. Downregulation of ER-mitochondria contact formation is sufficient to inhibit the LZD-driven NLRP3 inflammasome activation and IL-1ß production, restoring wound closure. These results identify the ER-mitochondria association as a key factor for NLRP3 activation and reveal a new mechanism in the regulation of the wound healing process that might be clinically relevant.


Asunto(s)
Retículo Endoplásmico , Inflamasomas , Interleucina-1beta , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Cicatrización de Heridas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Humanos , Animales , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Ratones Endogámicos C57BL
10.
Antioxid Redox Signal ; 38(7-9): 581-598, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36112728

RESUMEN

Significance: Maintenance of mitochondrial quality is essential for cellular homeostasis. Among processes responsible for preserving healthy mitochondria, mitophagy selectively eliminates dysfunctional mitochondria by targeting them to the autophagosome for degradation. Alterations in mitophagy lead to the accumulation of damaged mitochondria, which plays an essential role in several diseases such as carcinogenesis and tumor progression, neurodegenerative disorders, and autoimmune and cardiovascular pathologies. Recent Advances: Calcium (Ca2+) plays a fundamental role in cell life, modulating several pathways, such as gene expression, proliferation, differentiation, metabolism, cell death, and survival. Indeed, because it is involved in all these events, Ca2+ is the most versatile intracellular second messenger. Being a process that limits cellular degeneration, mitophagy participates in cellular fate decisions. Several mitochondrial parameters, such as membrane potential, structure, and reactive oxygen species, can trigger the activation of mitophagic machinery. These parameters regulate not only mitophagy but also the mitochondrial Ca2+ uptake. Critical Issues: Ca2+ handling is fundamental in regulating ATP production by mitochondria and mitochondrial quality control processes. Despite the growing literature about the link between Ca2+ and mitophagy, the mechanism by which Ca2+ homeostasis regulates mitophagy is still debated. Future Directions: Several studies have revealed that excessive mitophagy together with altered mitochondrial Ca2+ uptake leads to different dysfunctions in numerous diseases. Thus, therapeutic modulation of these pathways is considered a promising treatment. Antioxid. Redox Signal. 38, 581-598.


Asunto(s)
Calcio , Mitofagia , Calcio/metabolismo , Mitocondrias/metabolismo , Homeostasis , Transporte Biológico , Autofagia
11.
Cell Rep ; 42(1): 111999, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662618

RESUMEN

Substrate degradation by the ubiquitin proteasome system (UPS) in specific membrane compartments remains elusive. Here, we show that the interplay of two lipid modifications and PDE6δ regulates compartmental substrate targeting via the SCFFBXL2. FBXL2 is palmitoylated in a prenylation-dependent manner on cysteines 417 and 419 juxtaposed to the CaaX motif. Palmitoylation/depalmitoylation regulates its subcellular trafficking for substrate engagement and degradation. To control its subcellular distribution, lipid-modified FBXL2 interacts with PDE6δ. Perturbing the equilibrium between FBXL2 and PDE6δ disrupts the delivery of FBXL2 to all membrane compartments, whereas depalmitoylated FBXL2 is enriched on the endoplasmic reticulum (ER). Depalmitoylated FBXL2(C417S/C419S) promotes the degradation of IP3R3 at the ER, inhibits IP3R3-dependent mitochondrial calcium overload, and counteracts calcium-dependent cell death upon oxidative stress. In contrast, disrupting the PDE6δ-FBXL2 equilibrium has the opposite effect. These findings describe a mechanism underlying spatially-restricted substrate degradation and suggest that inhibition of FBXL2 palmitoylation and/or binding to PDE6δ may offer therapeutic benefits.


Asunto(s)
Proteínas F-Box , Proteínas F-Box/metabolismo , Calcio/metabolismo , Lipoilación , Ubiquitinación , Lípidos
12.
J Med Chem ; 66(7): 5223-5241, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36972104

RESUMEN

The NLRP3 inflammasome is a critical component of innate immunity that senses diverse pathogen- and host-derived molecules. However, its aberrant activation has been associated with the pathogenesis of multiple diseases, including cancer. In this study, we designed and synthesized a series of aryl sulfonamide derivatives (ASDs) to inhibit the NLRP3 inflammasome. Among these, compounds 6c, 7n, and 10 specifically inhibited NLRP3 activation at nanomolar concentrations without affecting the activation of the NLRC4 and AIM2 inflammasomes. Furthermore, we demonstrated that these compounds reduce interleukin-1ß (IL-1ß) production in vivo and attenuate melanoma tumor growth. Moreover, metabolic stability in liver microsomes of 6c, 7n, and 10 was studied along with plasma exposure in mice of the most interesting compound 6c. Therefore, we generated potent NLRP3 inflammasome inhibitors, which can be considered in future medicinal chemistry and pharmacological studies aimed at developing a new therapeutic approach for NLRP3 inflammasome-driven cancer.


Asunto(s)
Inflamasomas , Neoplasias , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inmunidad Innata , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL
13.
J Inflamm (Lond) ; 20(1): 40, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986089

RESUMEN

BACKGROUND: The recent pandemic outbursts, due to SARS-CoV-2, have highlighted once more the central role of the inflammatory process in the propagation of viral infection. The main consequence of COVID-19 is the induction of a diffuse pro-inflammatory state, also defined as a cytokine storm, which affects different organs, but mostly the lungs. We aimed to prove the efficacy of cinnamaldehyde, the active compound of cinnamon, as an anti-inflammatory compound, able to reduce SARS-CoV-2 induced cytokine storm. RESULTS: We enrolled 53 COVID-19 patients hospitalized for respiratory failure. The cohort was composed by 39 males and 13 females, aged 65.0 ± 9.8 years. We reported that COVID-19 patients have significantly higher IL-1ß and IL-6 plasma levels compared to non-COVID-19 pneumonia patients. In addition, human mononuclear cells (PBMCs) isolated from SARS-CoV-2 infected patients are significantly more prone to release pro-inflammatory cytokines upon stimuli. We demonstrated, using in vitro cell models, that macrophages are responsible for mediating the pro-inflammatory cytokine storm while lung cells support SARS-CoV-2 replication upon viral infection. In this context, cinnamaldehyde administration significantly reduces SARS-CoV-2-related inflammation by inhibiting NLRP3 mediated IL-1ß release in both PBMCs and THP-1 macrophages, as well as viral replication in CaLu-3 epithelial cells. Lastly, aerosol-administered cinnamaldehyde was able to significantly reduce IL-1ß release in an in vivo lung-inflammatory model. CONCLUSION: The obtained results suggest the possible use of cinnamaldehyde as a co-adjuvant preventive treatment for COVID-19 disease together with vaccination, but also as a promising dietary supplement to reduce, more broadly, viral induced inflammation.

14.
Cell Death Differ ; 30(2): 429-441, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36450825

RESUMEN

Uncontrolled inflammatory response arising from the tumor microenvironment (TME) significantly contributes to cancer progression, prompting an investigation and careful evaluation of counter-regulatory mechanisms. We identified a trimeric complex at the mitochondria-associated membranes (MAMs), in which the purinergic P2X7 receptor - NLRP3 inflammasome liaison is fine-tuned by the tumor suppressor PML. PML downregulation drives an exacerbated immune response due to a loss of P2X7R-NLRP3 restraint that boosts tumor growth. PML mislocalization from MAMs elicits an uncontrolled NLRP3 activation, and consequent cytokines blast fueling cancer and worsening the tumor prognosis in different human cancers. New mechanistic insights are provided for the PML-P2X7R-NLRP3 axis to govern the TME in human carcinogenesis, fostering new targeted therapeutic approaches.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Proteína de la Leucemia Promielocítica , Receptores Purinérgicos P2X7 , Microambiente Tumoral , Humanos , Citocinas , Inflamasomas , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Receptores Purinérgicos P2X7/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo
15.
Biology (Basel) ; 11(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35205167

RESUMEN

Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.

16.
Biomedicines ; 10(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35327528

RESUMEN

The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.

17.
Cancers (Basel) ; 14(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35884397

RESUMEN

Patient prognosis is a critical consideration in the treatment decision-making process. Conventionally, patient outcome is related to tumor characteristics, the cancer spread, and the patients' conditions. However, unexplained differences in survival time are often observed, even among patients with similar clinical and molecular tumor traits. This study investigated how inflammatory radiomic features can correlate with evidence-based biological analyses to provide translated value in assessing clinical outcomes in patients with NSCLC. We analyzed a group of 15 patients with stage I NSCLC who showed extremely different OS outcomes despite apparently harboring the same tumor characteristics. We thus analyzed the inflammatory levels in their tumor microenvironment (TME) either biologically or radiologically, focusing our attention on the NLRP3 cancer-dependent inflammasome pathway. We determined an NLRP3-dependent peritumoral inflammatory status correlated with the outcome of NSCLC patients, with markedly increased OS in those patients with a low rate of NLRP3 activation. We consistently extracted specific radiomic signatures that perfectly discriminated patients' inflammatory levels and, therefore, their clinical outcomes. We developed and validated a radiomic model unleashing quantitative inflammatory features from CT images with an excellent performance to predict the evolution pattern of NSCLC tumors for a personalized and accelerated patient management in a non-invasive way.

18.
Sci Rep ; 12(1): 7795, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551488

RESUMEN

Brain injury at birth is an important cause of neurological and behavioral disorders. Hypoxic-ischemic encephalopathy (HIE) is a critical cerebral event occurring acutely or chronically at birth with high mortality and morbidity in newborns. Therapeutic strategies for the prevention of brain damage are still unknown, and the only medical intervention for newborns with moderate-to-severe HIE is therapeutic hypothermia (TH). Although the neurological outcome depends on the severity of the initial insult, emerging evidence suggests that infants with mild HIE who are not treated with TH have an increased risk for neurodevelopmental impairment; in the current clinical setting, there are no specific or validated biomarkers that can be used to both correlate the severity of the hypoxic insult at birth and monitor the trend in the insult over time. The aim of this work was to examine the presence of autophagic and mitophagic proteins in bodily fluids, to increase knowledge of what, early at birth, can inform therapeutic strategies in the first hours of life. This is a prospective multicentric study carried out from April 2019 to April 2020 in eight third-level neonatal intensive care units. All participants have been subjected to the plasma levels quantification of both Parkin (a protein involved in mitophagy) and ATG5 (involved in autophagy). These findings show that Parkin and ATG5 levels are related to hypoxic-ischemic insult and are reliable also at birth. These observations suggest a great potential diagnostic value for Parkin evaluation in the first 6 h of life.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Enfermedades del Recién Nacido , Proteína 5 Relacionada con la Autofagia , Femenino , Humanos , Hipoxia-Isquemia Encefálica/terapia , Lactante , Recién Nacido , Enfermedades del Recién Nacido/terapia , Embarazo , Estudios Prospectivos , Ubiquitina-Proteína Ligasas/genética
19.
Cancers (Basel) ; 13(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921106

RESUMEN

Mitochondria are well known to participate in multiple aspects of tumor formation and progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic disease is their contribution to the characteristic genomic instability that underlies the evolution of the disease. In this review, we summarize the known mechanisms by which mitochondrial alterations in cancer tolerate and support the accumulation of DNA mutations which leads to genomic instability. We describe recent studies elucidating mitochondrial responses to DNA damage as well as the direct contribution of mitochondria to favor the accumulation of DNA alterations.

20.
Cancers (Basel) ; 13(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064909

RESUMEN

Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1ß and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA