Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Mol Cell Cardiol ; 163: 20-32, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34624332

RESUMEN

Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.


Asunto(s)
Corazón , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Mamíferos , Ratones
2.
J Biol Chem ; 289(10): 6332-6340, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24375407

RESUMEN

The gastric pathogen Helicobacter pylori is a major cause of acute chronic gastritis and the development of stomach and duodenal ulcers. Chronic infection furthermore predisposes to the development of gastric cancer. Crucial to H. pylori survival within the hostile environment of the digestive system are the adhesins SabA and BabA; these molecules belong to the same protein family and permit the bacteria to bind tightly to sugar moieties Lewis(B) and sialyl-Lewis(X), respectively, on the surface of epithelial cells lining the stomach and duodenum. To date, no representative SabA/BabA structure has been determined, hampering the development of strategies to eliminate persistent H. pylori infections that fail to respond to conventional therapy. Here, using x-ray crystallography, we show that the soluble extracellular adhesin domain of SabA shares distant similarity to the tetratricopeptide repeat fold family. The molecule broadly resembles a golf putter in shape, with the head region featuring a large cavity surrounded by loops that vary in sequence between different H. pylori strains. The N-terminal and C-terminal helices protrude at right angles from the head domain and together form a shaft that connects to a predicted outer membrane protein-like ß-barrel trans-membrane domain. Using surface plasmon resonance, we were able to detect binding of the SabA adhesin domain to sialyl-Lewis(X) and Lewis(X) but not to Lewis(A), Lewis(B), or Lewis(Y). Substitution of the highly conserved glutamine residue 159 in the predicted ligand-binding pocket abrogates the binding of the SabA adhesin domain to sialyl-Lewis(X) and Lewis(X). Taken together, these data suggest that the adhesin domain of SabA is sufficient in isolation for specific ligand binding.


Asunto(s)
Adhesinas Bacterianas/química , Helicobacter pylori/metabolismo , Antígeno Lewis X/química , Ácido N-Acetilneuramínico/química , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Glutamina/química , Glutamina/genética , Ligandos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Antígeno Sialil Lewis X , Resonancia por Plasmón de Superficie
3.
J Biol Chem ; 288(22): 15821-9, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23592783

RESUMEN

The complement system is an ancient innate immune defense pathway that plays a front line role in eliminating microbial pathogens. Recognition of foreign targets by antibodies drives sequential activation of two serine proteases, C1r and C1s, which reside within the complement Component 1 (C1) complex. Active C1s propagates the immune response through its ability to bind and cleave the effector molecule complement Component 4 (C4). Currently, the precise structural and biochemical basis for the control of the interaction between C1s and C4 is unclear. Here, using surface plasmon resonance, we show that the transition of the C1s zymogen to the active form is essential for C1s binding to C4. To understand this, we determined the crystal structure of a zymogen C1s construct (comprising two complement control protein (CCP) domains and the serine protease (SP) domain). These data reveal that two loops (492-499 and 573-580) in the zymogen serine protease domain adopt a conformation that would be predicted to sterically abrogate C4 binding. The transition from zymogen to active C1s repositions both loops such that they would be able to interact with sulfotyrosine residues on C4. The structure also shows the junction of the CCP1 and CCP2 domains of C1s for the first time, yielding valuable information about the exosite for C4 binding located at this position. Together, these data provide a structural explanation for the control of the interaction with C1s and C4 and, furthermore, point to alternative strategies for developing therapeutic approaches for controlling activation of the complement cascade.


Asunto(s)
Complemento C1s/química , Complemento C4/química , Precursores Enzimáticos/química , Complemento C1s/genética , Complemento C1s/metabolismo , Complemento C4/genética , Complemento C4/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
4.
Mol Microbiol ; 84(5): 832-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22524202

RESUMEN

The ß-barrel assembly machine (BAM) complex is an essential feature of all bacteria with an outer membrane. The core subunit of the BAM complex is BamA and, in Escherichia coli, four lipoprotein subunits: BamB, BamC, BamD and BamE, also function in the BAM complex. Hidden Markov model analysis was used to comprehensively assess the distribution of subunits of the BAM lipoproteins across all subclasses of proteobacteria. A patchwork distribution was detected which is readily reconciled with the evolution of the α-, ß-, γ-, δ- and ε-proteobacteria. Our findings lead to a proposal that the ancestral BAM complex was composed of two subunits: BamA and BamD, and that BamB, BamC and BamE evolved later in a distinct sequence of events. Furthermore, in some lineages novel lipoproteins have evolved instead of the lipoproteins found in E. coli. As an example of this concept, we show that no known species of α-proteobacteria has a homologue of BamC. However, purification of the BAM complex from the model α-proteobacterium Caulobacter crescentus identified a novel subunit we refer to as BamF, which has a conserved sequence motif related to sequences found in BamC. BamF and BamD can be eluted from the BAM complex under similar conditions, mirroring the BamC:D module seen in the BAM complex of γ-proteobacteria such as E. coli.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Evolución Molecular , Lipoproteínas/genética , Proteobacteria/genética , ADN Bacteriano/genética , Genotipo , Subunidades de Proteína/genética
5.
Proc Natl Acad Sci U S A ; 106(37): 15791-5, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19717453

RESUMEN

Molecular machines drive essential biological processes, with the component parts of these machines each contributing a partial function or structural element. Mitochondria are organelles of eukaryotic cells, and depend for their biogenesis on a set of molecular machines for protein transport. How these molecular machines evolved is a fundamental question. Mitochondria were derived from an alpha-proteobacterial endosymbiont, and we identified in alpha-proteobacteria the component parts of a mitochondrial protein transport machine. In bacteria, the components are found in the inner membrane, topologically equivalent to the mitochondrial proteins. Although the bacterial proteins function in simple assemblies, relatively little mutation would be required to convert them to function as a protein transport machine. This analysis of protein transport provides a blueprint for the evolution of cellular machinery in general.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Bacterianas/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie
6.
FEMS Microbiol Rev ; 32(6): 995-1009, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18759741

RESUMEN

The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of beta-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, beta-propeller signatures in YfgL). Given that the process of the beta-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of beta-barrel proteins in eukaryotes.


Asunto(s)
Alphaproteobacteria/química , Alphaproteobacteria/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Alphaproteobacteria/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Transporte de Proteínas , Alineación de Secuencia
7.
Curr Biol ; 16(3): 221-9, 2006 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-16461275

RESUMEN

BACKGROUND: Mitochondria evolved from intracellular bacterial symbionts. Establishing mitochondria as organelles required a molecular machine to import proteins across the mitochondrial outer membrane. This machinery, the TOM complex, is composed of at least seven component parts, and its creation and evolution represented a sizeable challenge. Although there is good evidence that a core TOM complex, composed of three subunits, was established in the protomitochondria, we suggest that the receptor component of the TOM complex arose later in the evolution of this machine. RESULTS: We have solved by nuclear magnetic resonance the structure of the presequence binding receptor from the TOM complex of the plant Arabidopsis thaliana. The protein fold suggests that this protein, AtTom20, belongs to the tetratricopeptide repeat (TPR) superfamily, but it is unusual in that it contains insertions lengthening the helices of each TPR motif. Peptide titrations map the presequence binding site to a groove of the concave surface of the receptor. In vitro functional assays and peptide titrations suggest that the plant Tom20 is functionally equivalent to fungal and animal Tom20s. CONCLUSIONS: Comparison of the sequence and structure of Tom20 from plants and animals suggests that these two presequence binding receptors evolved from two distinct ancestral genes following the split of the animal and plant lineages. The need to bind equivalent mitochondrial targeting sequences and to make similar interactions within an equivalent protein translocation machine has driven the convergent evolution of two distinct proteins to a common structure and function.


Asunto(s)
Arabidopsis/genética , Proteínas Portadoras/genética , Evolución Molecular , Mitocondrias/genética , Modelos Moleculares , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Biología Computacional , Componentes del Gen , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
8.
Curr Biol ; 15(11): R423-5, 2005 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15936264

RESUMEN

New light is being shed on the mechanism of protein import into mitochondria. The inner membrane translocase can switch between modes of translocation, and assists what might be an entropic device to drive the initial entry of substrate proteins across the outer membrane.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Biológicos , Proteínas/metabolismo , Receptores de Superficie Celular/metabolismo , Transferasas/metabolismo , Entropía , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas/fisiología
9.
Plant Physiol Biochem ; 46(3): 265-74, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18272380

RESUMEN

Proteins destined for the mitochondria required the evolution of specific and efficient molecular machinery for protein import. The subunits of the import translocases of the inner membrane (TIM) appear homologous and conserved amongst species, however the components of the translocase of the outer membrane (TOM) show extensive differences between species. Recently, bioinformatic and structural analysis of Tom20, an important receptor subunit of the TOM complex, suggests that this protein complex arose from different ancestors for plants compared to animals and fungi, but has subsequently converged to provide similar functions and analogous structures. Here we review the current knowledge of the TOM complex, the function and structure of the various subunits that make up this molecular machine.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/fisiología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/fisiología , Modelos Biológicos , Modelos Moleculares , Estructura Terciaria de Proteína
10.
Source Code Biol Med ; 8(1): 9, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23506117

RESUMEN

BACKGROUND: The annotation of surface exposed bacterial membrane proteins is an important step in interpretation and validation of proteomic experiments. In particular, proteins detected by cell surface protease shaving experiments can indicate exposed regions of membrane proteins that may contain antigenic determinants or constitute vaccine targets in pathogenic bacteria. RESULTS: Inmembrane is a tool to predict the membrane proteins with surface-exposed regions of polypeptide in sets of bacterial protein sequences. We have re-implemented a protocol for Gram-positive bacterial proteomes, and developed a new protocol for Gram-negative bacteria, which interface with multiple predictors of subcellular localization and membrane protein topology. Through the use of a modern scripting language, inmembrane provides an accessible code-base and extensible architecture that is amenable to modification for related sequence annotation tasks. CONCLUSIONS: Inmembrane easily integrates predictions from both local binaries and web-based queries to help gain an overview of likely surface exposed protein in a bacterial proteome. The program is hosted on the Github repository http://github.com/boscoh/inmembrane.

11.
PLoS One ; 7(11): e50300, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209700

RESUMEN

The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.


Asunto(s)
Péptido Hidrolasas/química , Proteínas/química , Algoritmos , Animales , Inteligencia Artificial , Catálisis , Bovinos , Biología Computacional/métodos , Granzimas/química , Humanos , Hidrólisis , Ratones , Modelos Estadísticos , Péptidos/química , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , Curva ROC , Programas Informáticos , Solventes/química , Especificidad por Sustrato
12.
J Mol Biol ; 422(4): 545-55, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22683355

RESUMEN

The ß-barrel assembly machinery (BAM) complex drives the assembly of ß-barrel proteins into the outer membrane of gram-negative bacteria. It is composed of five subunits: BamA, BamB, BamC, BamD, and BamE. We find that the BAM complex isolated from the outer membrane of Escherichia coli consists of a core complex of BamA:B:C:D:E and, in addition, a BamA:B module and a BamC:D module. In the absence of BamC, these modules are destabilized, resulting in increased protease susceptibility of BamD and BamB. While the N-terminus of BamC carries a highly conserved region crucial for stable interaction with BamD, immunofluorescence, immunoprecipitation, and protease-sensitivity assays show that the C-terminal domain of BamC, composed of two helix-grip motifs, is exposed on the surface of E. coli. This unexpected topology of a bacterial lipoprotein is reminiscent of the analogous protein subunits from the mitochondrial ß-barrel insertion machinery, the SAM complex. The modular arrangement and topological features provide new insight into the architecture of the BAM complex, towards a better understanding of the mechanism driving ß-barrel membrane protein assembly.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ligadas a Lípidos/metabolismo , Lipoproteínas/metabolismo , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
13.
Nat Struct Mol Biol ; 19(5): 506-10, S1, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22466966

RESUMEN

Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Citrobacter rodentium/metabolismo , Escherichia coli/metabolismo , Transporte de Proteínas , Salmonella enterica/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Membrana Bacteriana Externa/análisis , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Citrobacter rodentium/química , Citrobacter rodentium/genética , Escherichia coli/química , Proteínas de Escherichia coli/química , Eliminación de Gen , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conejos , Salmonella enterica/química
14.
Curr Biol ; 21(20): 1738-43, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22000100

RESUMEN

Mitochondria are found in all eukaryotic cells and derive from a bacterial endosymbiont [1, 2]. The evolution of a protein import system was a prerequisite for the conversion of the endosymbiont into a true organelle. Tom40, the essential component of the protein translocase of the outer membrane, is conserved in mitochondria of almost all eukaryotes but lacks bacterial orthologs [3-6]. It serves as the gateway through which all mitochondrial proteins are imported. The parasitic protozoa Trypanosoma brucei and its relatives do not have a Tom40-like protein, which raises the question of how proteins are imported by their mitochondria [7, 8]. Using a combination of bioinformatics and in vivo and in vitro studies, we have discovered that T. brucei likely employs a different import channel, termed ATOM (archaic translocase of the outer mitochondrial membrane). ATOM mediates the import of nuclear-encoded proteins into mitochondria and is essential for viability of trypanosomes. It is not related to Tom40 but is instead an ortholog of a subgroup of the Omp85 protein superfamily that is involved in membrane translocation and insertion of bacterial outer membrane proteins [9]. This suggests that the protein import channel in trypanosomes is a relic of an archaic protein transport system that was operational in the ancestor of all eukaryotes.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Células Eucariotas/metabolismo , Evolución Molecular , Metotrexato/farmacología , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Conformación Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/genética , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
15.
PLoS One ; 6(9): e24428, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21935410

RESUMEN

Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the ß-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.


Asunto(s)
Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo , Trichomonas vaginalis/metabolismo , Secuencia de Aminoácidos , Transporte Biológico/fisiología , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Porinas/metabolismo , Proteínas Protozoarias/química , Homología de Secuencia de Aminoácido
16.
PLoS One ; 6(2): e17285, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21390322

RESUMEN

The mitosomes of Giardia intestinalis are thought to be mitochondria highly-reduced in response to the oxygen-poor niche. We performed a quantitative proteomic assessment of Giardia mitosomes to increase understanding of the function and evolutionary origin of these enigmatic organelles. Mitosome-enriched fractions were obtained from cell homogenate using Optiprep gradient centrifugation. To distinguish mitosomal proteins from contamination, we used a quantitative shot-gun strategy based on isobaric tagging of peptides with iTRAQ and tandem mass spectrometry. Altogether, 638 proteins were identified in mitosome-enriched fractions. Of these, 139 proteins had iTRAQ ratio similar to that of the six known mitosomal markers. Proteins were selected for expression in Giardia to verify their cellular localizations and the mitosomal localization of 20 proteins was confirmed. These proteins include nine components of the FeS cluster assembly machinery, a novel diflavo-protein with NADPH reductase activity, a novel VAMP-associated protein, and a key component of the outer membrane protein translocase. None of the novel mitosomal proteins was predicted by previous genome analyses. The small proteome of the Giardia mitosome reflects the reduction in mitochondrial metabolism, which is limited to the FeS cluster assembly pathway, and a simplicity in the protein import pathway required for organelle biogenesis.


Asunto(s)
Giardia lamblia/metabolismo , Mitocondrias/metabolismo , Tamaño Mitocondrial/fisiología , Proteoma/análisis , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Evolución Molecular , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Parásitos/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Proteoma/metabolismo , Espectrometría de Masas en Tándem
17.
J Mol Biol ; 405(3): 804-18, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21087612

RESUMEN

The Tom20 and Tom22 receptor subunits of the TOM (translocase of the outer mitochondrial membrane) complex recognize N-terminal presequences of proteins that are to be imported into the mitochondrion. In plants, Tom20 is C-terminally anchored in the mitochondrial membrane, whereas Tom20 is N-terminally anchored in animals and fungi. Furthermore, the cytosolic domain of Tom22 in plants is smaller than its animal/fungal counterpart and contains fewer acidic residues. Here, NMR spectroscopy was used to explore presequence interactions with the cytosolic regions of receptors from the plant Arabidopsis thaliana and the fungus Saccharomyces cerevisiae (i.e., AtTom20, AtTom22, and ScTom22). It was found that AtTom20 possesses a discontinuous bidentate hydrophobic binding site for presequences. The presequences on plant mitochondrial proteins comprise two or more hydrophobic binding regions to match this bidentate site. NMR data suggested that while these presequences bind to ScTom22, they do not bind to AtTom22. AtTom22, however, binds to AtTom20 at the same binding site as presequences, suggesting that this domain competes with the presequences of imported proteins, thereby enabling their progression along the import pathway.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Transporte de Membrana/química , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Receptores de Superficie Celular/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular
18.
J Mol Biol ; 376(3): 694-704, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18187149

RESUMEN

Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the beta-barrel channel Tom40 and additional subunits each with single, alpha-helical transmembrane segments. How alpha-helical transmembrane segments might be assembled onto a transmembrane beta-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Biol Evol ; 24(5): 1149-60, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17329230

RESUMEN

The mitochondrial inner and outer membranes are composed of a variety of integral membrane proteins, assembled into the membranes posttranslationally. The small translocase of the inner mitochondrial membranes (TIMs) are a group of approximately 10 kDa proteins that function as chaperones to ferry the imported proteins across the mitochondrial intermembrane space to the outer and inner membranes. In yeast, there are 5 small TIM proteins: Tim8, Tim9, Tim10, Tim12, and Tim13, with equivalent proteins reported in humans. Using hidden Markov models, we find that many eukaryotes have proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits. Some eukaryotes provide "snapshots" of evolution, with a single protein showing the features of both Tim8 and Tim13, suggesting that a single progenitor gene has given rise to each of the small TIMs through duplication and modification. We show that no "Tim12" family of proteins exist, but rather that variant forms of the cognate small TIMs have been recently duplicated and modified to provide new functions: the yeast Tim12 is a modified form of Tim10, whereas in humans and some protists variant forms of Tim9, Tim8, and Tim13 are found instead. Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-binding tentacles, whereas more hydrophobic residues are found in the equivalent substrate-binding region of Tim13. The substrate-binding region of Tim10 and Tim13 represent structurally independent domains: when the acidic domain from Tim10 is attached to Tim13, the Tim8-Tim13(10) complex becomes essential and the Tim9-Tim10 complex becomes dispensable. The conserved features in the Tim10 and Tim13 subunits provide distinct binding surfaces to accommodate the broad range of substrate proteins delivered to the mitochondrial inner and outer membranes.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/fisiología , Chaperonas Moleculares/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Duplicación de Gen , Humanos , Cadenas de Markov , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Conformación Proteica , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA