Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 298(2): 101531, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953855

RESUMEN

Cancer is often characterized by aberrant gene expression patterns caused by the inappropriate activation of transcription factors. Signal transducer and activator of transcription 3 (STAT3) is a key transcriptional regulator of many protumorigenic processes and is persistently activated in many types of human cancer. However, like many transcription factors, STAT3 has proven difficult to target clinically. To address this unmet clinical need, we previously developed a cell-based assay of STAT3 transcriptional activity and performed an unbiased and high-throughput screen of small molecules known to be biologically active in humans. We identified the antimicrobial drug pyrimethamine as a novel and specific inhibitor of STAT3 transcriptional activity. Here, we show that pyrimethamine does not significantly affect STAT3 phosphorylation, nuclear translocation, or DNA binding at concentrations sufficient to inhibit STAT3 transcriptional activity, suggesting a potentially novel mechanism of inhibition. To identify the direct molecular target of pyrimethamine and further elucidate the mechanism of action, we used a new quantitative proteome profiling approach called proteome integral solubility alteration coupled with a metabolomic analysis. We identified human dihydrofolate reductase as a target of pyrimethamine and demonstrated that the STAT3-inhibitory effects of pyrimethamine are the result of a deficiency in reduced folate downstream of dihydrofolate reductase inhibition, implicating folate metabolism in the regulation of STAT3 transcriptional activity. This study reveals a previously unknown regulatory node of the STAT3 pathway that may be important for the development of novel strategies to treat STAT3-driven cancers.


Asunto(s)
Antiinfecciosos , Pirimetamina , Factor de Transcripción STAT3 , Tetrahidrofolato Deshidrogenasa , Antiinfecciosos/química , Antiinfecciosos/farmacología , Línea Celular Tumoral , Ácido Fólico/metabolismo , Humanos , Proteoma/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
2.
Eur J Med Chem ; 264: 115971, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38071795

RESUMEN

Pharmacological inhibition of dihydrofolate reductase (DHFR) is an established approach for treating a variety of human diseases, including foreign infections and cancer. However, treatment with classic DHFR inhibitors, such as methotrexate (MTX), are associated with negative side-effects and resistance mechanisms that have prompted the search for alternatives. The DHFR inhibitor pyrimethamine (Pyr) has compelling anti-cancer activity in in vivo models, but lacks potency compared to MTX, thereby requiring higher concentrations to induce therapeutic responses. The purpose of this work was to investigate structural analogues of Pyr to improve its in vitro and cellular activity. A series of 36 Pyr analogues were synthesized and tested in a sequence of in vitro and cell-based assays to monitor their DHFR inhibitory activity, cellular target engagement, and impact on breast cancer cell viability. Ten top compounds were identified, two of which stood out as potential lead candidates, 32 and 34. These functionalized Pyr analogues potently engaged DHFR in cells, at concentrations as low as 1 nM and represent promising DHFR inhibitors that could be further explored as potential anti-cancer agents.


Asunto(s)
Antineoplásicos , Antagonistas del Ácido Fólico , Neoplasias , Humanos , Pirimetamina/farmacología , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Metotrexato/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Biología , Tetrahidrofolato Deshidrogenasa/química
3.
Metabolites ; 13(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36837770

RESUMEN

Dihydrofolate reductase (DHFR) is an established anti-cancer drug target whose inhibition disrupts folate metabolism and STAT3-dependent gene expression. Cycloguanil was proposed as a DHFR inhibitor in the 1950s and is the active metabolite of clinically approved plasmodium DHFR inhibitor Proguanil. The Cycloguanil scaffold was explored to generate potential cancer therapies in the 1970s. Herein, current computational and chemical biology techniques were employed to re-investigate the anti-cancer activity of Cycloguanil and related compounds. In silico modeling was employed to identify promising Cycloguanil analogues from NCI databases, which were cross-referenced with NCI-60 Human Tumor Cell Line Screening data. Using target engagement assays, it was found that these compounds engage DHFR in cells at sub-nanomolar concentrations; however, growth impairments were not observed until higher concentrations. Folinic acid treatment rescues the viability impairments induced by some, but not all, Cycloguanil analogues, suggesting these compounds may have additional targets. Cycloguanil and its most promising analogue, NSC127159, induced similar metabolite profiles compared to established DHFR inhibitors Methotrexate and Pyrimethamine while also blocking downstream signaling, including STAT3 transcriptional activity. These data confirm that Cycloguanil and its analogues are potent inhibitors of human DHFR, and their anti-cancer activity may be worth further investigation.

4.
Org Biomol Chem ; 10(39): 7949-51, 2012 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22936294

RESUMEN

ß-Lithiooxyphosphonium ylides, made in situ from an aldehyde and methylenetriphenylphosphorane, react with a second aldehyde to form E-allylic alcohols. α-Branching and α,ß-unsaturation in the second aldehyde, together with the lack of further substitution on the phosphorane carbon play important roles in selectivity. A range of these aldehydes, in addition to aromatic aldehydes as the second aldehyde also provided synthetically useful access to E-allylic alcohols.


Asunto(s)
Aldehídos/química , Compuestos Organofosforados/química , Propanoles/síntesis química , Estructura Molecular , Propanoles/química , Estereoisomerismo
5.
Beilstein J Org Chem ; 8: 1896-900, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209528

RESUMEN

Terminal epoxides undergo lithium 2,2,6,6-tetramethylpiperidide-induced α-lithiation and subsequent interception with Ph(3)P to provide a new and direct entry to ß-lithiooxyphosphonium ylides. The intermediacy of such an ylide is demonstrated by representative alkene-forming reactions with chloromethyl pivalate, benzaldehyde and CD(3)OD, giving a Z-allylic pivalate, a conjugated E-allylic alcohol and a partially deuterated terminal alkene, respectively, in modest yields.

6.
Cell Chem Biol ; 29(5): 870-882.e11, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34520745

RESUMEN

The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.


Asunto(s)
Mycobacterium tuberculosis , Proteínas de Saccharomyces cerevisiae , Tuberculosis , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Autofagia , Humanos , Macrófagos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA