Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 66(3): 898-905, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23228546

RESUMEN

Deuterostomia, one of the three major lineages of Bilateria, comprises many well-known animals such as vertebrates, sea squirts, sea stars and sea urchins. Whereas monophyly of Deuterostomia and several subtaxa is well supported, the relationships of these to each other and, hence, deuterostome relationships are still uncertain. To address these issues in deuterostome phylogeny we analyzed datasets comprising more than 300 complete deuterostome mitochondrial genomes. Based on sequence information, the results revealed support for several relationships such as a basal position of Xenoturbella within Deuterostomia or for taxa like Craniota or Ambulacraria, but yielded also problems in some taxa, e.g. Tunicata, Pterobranchia and Ophiuroidea, due to long-branch artifacts. However, within tunicates the relationships are well supported. Variation in the genetic code was also informative and, e.g., supported the taxon Ambulacraria including Pterobranchia.


Asunto(s)
Cordados/genética , Equinodermos/genética , Genoma Mitocondrial/genética , Filogenia , Animales , Clasificación/métodos , Biología Computacional , Código Genético/genética , Funciones de Verosimilitud , Modelos Genéticos
2.
Mol Phylogenet Evol ; 69(2): 352-64, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23684911

RESUMEN

About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.


Asunto(s)
Orden Génico , Genoma Mitocondrial , Filogenia , Sustitución de Aminoácidos , Aminoácidos/genética , Animales , Teorema de Bayes , Reordenamiento Génico , Funciones de Verosimilitud , Modelos Genéticos , Nucleótidos/genética , Alineación de Secuencia
3.
BMC Evol Biol ; 11: 134, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21599892

RESUMEN

BACKGROUND: The Hemichordata comprises solitary-living Enteropneusta and colonial-living Pterobranchia, sharing morphological features with both Chordata and Echinodermata. Despite their key role for understanding deuterostome evolution, hemichordate phylogeny is controversial and only few molecular data are available for phylogenetic analysis. Furthermore, mitochondrial sequences are completely lacking for pterobranchs. Therefore, we determined and analyzed the complete mitochondrial genome of the pterobranch Rhabdopleura compacta to elucidate deuterostome evolution. Thereby, we also gained important insights in mitochondrial tRNA evolution. RESULTS: The mitochondrial DNA of Rhabdopleura compacta corresponds in size and gene content to typical mitochondrial genomes of metazoans, but shows the strongest known strand-specific mutational bias in the nucleotide composition among deuterostomes with a very GT-rich main-coding strand. The order of the protein-coding genes in R. compacta is similar to that of the deuterostome ground pattern. However, the protein-coding genes have been highly affected by a strand-specific mutational pressure showing unusual codon frequency and amino acid composition. This composition caused extremely long branches in phylogenetic analyses. The unusual codon frequency points to a selection pressure on the tRNA translation system to codon-anticodon sequences of highest versatility instead of showing adaptations in anticodon sequences to the most frequent codons. Furthermore, an assignment of the codon AGG to Lysine has been detected in the mitochondrial genome of R. compacta, which is otherwise observed only in the mitogenomes of some arthropods. The genomes of these arthropods do not have such a strong strand-specific bias as found in R. compacta but possess an identical mutation in the anticodon sequence of the tRNALys. CONCLUSION: A strong reversed asymmetrical mutational constraint in the mitochondrial genome of Rhabdopleura compacta may have arisen by an inversion of the replication direction and adaptation to this bias in the protein sequences leading to an enigmatic mitochondrial genome. Although, phylogenetic analyses of protein coding sequences are hampered, features of the tRNA system of R. compacta support the monophyly of Ambulacraria. The identical reassignment of AGG to Lysine in two distinct groups may have occurred by convergent evolution in the anticodon sequence of the tRNALys.


Asunto(s)
Cordados no Vertebrados/genética , Animales , Codón , Evolución Molecular , Genoma Mitocondrial , Datos de Secuencia Molecular , ARN de Transferencia/genética
4.
Mol Phylogenet Evol ; 56(1): 201-11, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20152912

RESUMEN

The genome architecture and amino acid sequences of six new complete mitochondrial genomes were determined from representatives of Hemichordata (1), Ophiuroidea (3), Echinoidea (1) and Holothuroidea (1) and were analysed together with previously known sequences. Phylogenetic analyses recovered three lineages within echinoderms, Crinoidea, Ophiuroidea and a group comprising Holothuroidea, Echinoidea, and Asteroidea. In contrast to previous analyses of mitochondrial genomes the increased data set recovered the classical echinoderm phylogeny of Eleutherozoa and Echinozoa in Maximum Likelihood and Bayesian analyses using hemichordate out-group representatives. However, an inconsistent ramification appeared with vertebrate out-groups and in Maximum Parsimony and Neighbour Joining reconstructions. The basal (consensus) gene orders of all three lineages could be derived from a hypothetical ancestral crinoid gene order by one single rearrangement in each lineage. The genome architecture was highly conserved in Echinoidea, whereas the highest gene order differences and large amounts of unassigned sequences (UAS) were detected in Ophiuroidea, supporting a higher evolutionary rate than in any other echinoderm lineage. The variability in gene order and UAS regions in ophiuroid genomes suggest dominating rearrangement mechanisms by duplication events.


Asunto(s)
Equinodermos/genética , Evolución Molecular , Genoma Mitocondrial , Filogenia , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Equinodermos/clasificación , Orden Génico , Reordenamiento Génico , Funciones de Verosimilitud , Análisis de Secuencia de ADN
5.
Bioinformatics ; 23(21): 2957-8, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17895271

RESUMEN

SUMMARY: We present the web-based program CREx for heuristically determining pairwise rearrangement events in unichromosomal genomes. CREx considers transpositions, reverse transpositions, reversals and tandem-duplication-random-loss (TDRL) events. It supports the user in finding parsimonious rearrangement scenarios given a phylogenetic hypothesis. CREx is based on common intervals, which reflect genes that appear consecutively in several of the input gene orders. AVAILABILITY: CREx is freely available at http://pacosy.informatik.uni-leipzig.de/crex


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Reordenamiento Génico/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Interfaz Usuario-Computador , Gráficos por Computador
6.
Mol Phylogenet Evol ; 47(2): 855-64, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18280182

RESUMEN

A comprehensive analysis of the mitochondrial gene orders of all previously published and two novel Antedon mediterranea (Crinoidea) and Ophiura albida (Ophiuroidea) complete echinoderm mitochondrial genomes shows that all major types of rearrangement operations are necessary to explain the evolution of mitochondrial genomes. In addition to protein coding genes we include all tRNA genes as well as the control region in our analysis. Surprisingly, 7 of the 16 genomes published in the GenBank database contain misannotations, mostly unannotated tRNAs and/or mistakes in the orientation of tRNAs, which we have corrected here. Although the gene orders of mt genomes appear very different, only 8 events are necessary to explain the evolutionary history of echinoderms with the exception of the ophiuroids. Only two of these rearrangements are inversions, while we identify three tandem-duplication-random-loss events and three transpositions.


Asunto(s)
Equinodermos/genética , Evolución Molecular , Orden Génico/genética , Genes Mitocondriales , Animales , Reordenamiento Génico , Genoma/genética , Funciones de Verosimilitud , Filogenia
7.
Theory Biosci ; 126(1): 35-42, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18087755

RESUMEN

The phylogenetic position of Xenoturbella bocki has been a matter of controversy since its description in 1949. We sequenced a second complete mitochondrial genome of this species and performed phylogenetic analyses based on the amino acid sequences of all 13 mitochondrial protein-coding genes and on its gene order. Our results confirm the deuterostome relationship of Xenoturbella. However, in contrast to a recently published study (Bourlat et al. in Nature 444:85-88, 2006), our data analysis suggests a more basal branching of Xenoturbella within the deuterostomes, rather than a sister-group relationship to the Ambulacraria (Hemichordata and Echinodermata).


Asunto(s)
ADN Mitocondrial/genética , Invertebrados/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Mitocondrial/química , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN de Transferencia/química , ARN de Transferencia/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA