Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Lipid Res ; 65(6): 100557, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719152

RESUMEN

Dietary sphingomyelin (SM) has been reported to favorably modulate postprandial lipemia. Mechanisms underlying these beneficial effects on cardiovascular risk markers are not fully elucidated. Rodent studies showed that tritiated SM was hydrolyzed in the intestinal lumen into ceramides (Cer) and further to sphingosine (SPH) and fatty acids (FA) that were absorbed by the intestine. Our objective was to investigate the uptake and metabolism of SPH and/or tricosanoic acid (C23:0), the main FA of milk SM, as well as lipid secretion in Caco-2/TC7 cells cultured on semipermeable inserts. Mixed micelles (MM) consisting of different digested lipids and taurocholate were prepared without or with SPH, SPH and C23:0 (SPH+C23:0), or C23:0. Triglycerides (TG) were quantified in the basolateral medium, and sphingolipids were analyzed by tandem mass spectrometry. TG secretion increased 11-fold in all MM-incubated cells compared with lipid-free medium. Apical supply of SPH-enriched MM led to increased concentrations of total Cer in cells, and coaddition of C23:0 in SPH-enriched MM led to a preferential increase of C23:0 Cer and C23:0 SM. Complementary experiments using deuterated SPH demonstrated that SPH-d9 was partly converted to sphingosine-1-phosphate-d9, Cer-d9, and SM-d9 within cells incubated with SPH-enriched MM. A few Cer-d9 (2% of added SPH-d9) was recovered in the basolateral medium of (MM+SPH)-incubated cells, especially C23:0 Cer-d9 in (MM+SPH+C23:0)-enriched cells. In conclusion, present results indicate that MM enriched with (SPH+C23:0), such as found in postprandial micelles formed after milk SM ingestion, directly impacts sphingolipid endogenous metabolism in enterocytes, resulting in the secretion of TG-rich particles enriched with C23:0 Cer.


Asunto(s)
Ceramidas , Absorción Intestinal , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Humanos , Ceramidas/metabolismo , Células CACO-2 , Micelas , Triglicéridos/metabolismo , Marcaje Isotópico , Animales
2.
FASEB J ; 35(6): e21650, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33993539

RESUMEN

Mesenchymal stem cells from healthy adipose tissue are adipocytes progenitors with immunosuppressive potential that are used for years in cell therapy. Whether adipose stem cells (ASC) may prevent inflammation in early obesity is not known. To address this question, we performed a kinetic study of high-fat (HF) diet induced obesity in mice to follow the immune regulating functions of adipose stem cells (ASC) isolated from the subcutaneous (SAT) and the visceral adipose tissue (VAT). Our results show that, early in obesity and before inflammation was detected, HF diet durably and differently activated ASC from SAT and VAT. Subcutaneous ASC from HF-fed mice strongly inhibited the proliferation of activated T lymphocytes, whereas visceral ASC selectively inhibited TNFα expression by macrophages and simultaneously released higher concentrations of IL6. These depot specific differences may contribute to the low-grade inflammation that develops with obesity in VAT while inflammation in SAT is delayed. The mechanisms involved differ from those already described for naïve cells activation with inflammatory cytokines and probably engaged metabolic activation. These results evidence that adipose stem cells are metabolic sensors acquiring an obesity-primed immunocompetent state in answer to depot-specific intrinsic features with overnutrition, placing these cells ahead of inflammation in the local dialog with immune cells.


Asunto(s)
Tejido Adiposo/inmunología , Inflamación/inmunología , Grasa Intraabdominal/inmunología , Células Madre Mesenquimatosas/inmunología , Obesidad/fisiopatología , Grasa Subcutánea/inmunología , Linfocitos T/inmunología , Tejido Adiposo/patología , Animales , Inflamación/patología , Grasa Intraabdominal/patología , Activación de Linfocitos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Grasa Subcutánea/patología , Linfocitos T/patología
3.
J Dairy Sci ; 100(5): 3360-3372, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28259408

RESUMEN

ß-Casofensin is a bioactive milk peptide that modulates the intestinal barrier, particularly through its action on goblet cells. ß-Casofensin corresponds to fragment (f) 94-123 of the bovine ß-casein (ß-CN) A2 variant. Fifteen genetic variants of bovine ß-CN (A1-3, B-G, H1-2, I-L) are known, of which the A2, A1, and B forms are the most common. These variants differ from each other by the substitution of one or more amino acids, some of which are localized in f94 to 123. The aim of our study was to compare the intestinal effects of ß-casofensin A2 and its 3 main variants: A1, A3, and B. For this purpose, a solution (0.1 µM; 10 µL/g of body weight, postnatal d 10-20) containing ß-casofensin A2, one of its variants (A1, A3, or B), or drinking water (control; CT) was administered to rat pups orally. After euthanasia (postnatal d 20), intestinal segments were collected for biochemical and histochemical analysis and also used to determine paracellular permeability to fluorescein isothiocyanate-labeled 4-kDa dextran in an Ussing chamber. We also studied the direct effects of ß-casofensin A2 and its A1 variant on the paracellular permeability of jejunum segments of adult rats. ß-Casofensin A2 and its B variant significantly increased the population of goblet cells compared with the CT, A1, and A3 groups. The mucin 2 mRNA level was significantly higher in the ß-casofensin A2 group than in the CT, A3, and B groups. Our results also revealed that the protein expression of zonula occludens-1 and occludin was reduced in the jejunum of rats in the A1, A3, and B groups compared with the CT group. However, the A1 variant was the only peptide to decrease jejunal permeability compared with the CT group. This variant, tested directly in the apical compartment of an Ussing chamber at a concentration of 0.1 nM, also reduced jejunal permeability. In conclusion, the substitution of a single amino acid alters the effect of ß-CN sequence f94 to 123 on goblet cells and on intestinal permeability. A genetic polymorphism of ß-CN can affect the biological activity of peptides derived from this protein. These data should be taken into account in the production of bioactive foods.


Asunto(s)
Caseínas/química , Leche/química , Animales , Bovinos , Variación Genética , Mucosa Intestinal/metabolismo , Péptidos , Ratas
4.
Diabetologia ; 59(5): 1049-58, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26852333

RESUMEN

AIMS/HYPOTHESIS: The crosstalk between skeletal muscle (SkM) and beta cells plays a role in diabetes aetiology. In this study, we have investigated whether SkM-released exosome-like vesicles (ELVs) can be taken up by pancreatic beta cells and can deliver functional cargoes. METHODS: Mice were fed for 16 weeks with standard chow diet (SCD) or with standard diet enriched with 20% palmitate (HPD) and ELVs were purified from quadriceps muscle. Fluorescent ELVs from HPD or SCD quadriceps were injected i.v. or intramuscularly (i.m.) into mice to determine their biodistributions. Micro (mi)RNA quantification in ELVs was determined using quantitative real-time RT-PCR (qRT-PCR)-based TaqMan low-density arrays. Microarray analyses were performed to determine whether standard diet ELVs (SD-ELVs) and high palmitate diet ELVs (HPD-ELVs) induced specific transcriptional signatures in MIN6B1 cells. RESULTS: In vivo, muscle ELVs were taken up by pancreas, 24 h post-injection. In vitro, both SD-ELVs and HPD-ELVs transferred proteins and miRNAs to MIN6B1 cells and modulated gene expressions whereas only HPD-ELVs induced proliferation of MIN6B1 cells and isolated islets. Bioinformatic analyses suggested that transferred HPD-ELV miRNAs may participate in these effects. To validate this, we demonstrated that miR-16, which is overexpressed in HPD-ELVs, was transferred to MIN6B1 cells and regulated Ptch1, involved in pancreas development. In vivo, islets from HPD mice showed increased size and altered expression of genes involved in development, including Ptch1, suggesting that the effect of palm oil on islet size in vivo was reproduced in vitro by treating beta cells with HPD-ELVs. CONCLUSIONS/INTERPRETATION: Our data suggest that muscle ELVs might have an endocrine effect and could participate in adaptations in beta cell mass during insulin resistance.


Asunto(s)
Exosomas/metabolismo , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Animales , Línea Celular , Masculino , Ratones , MicroARNs/metabolismo , Fibras Musculares Esqueléticas/metabolismo
5.
Diabetologia ; 57(10): 2155-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25073444

RESUMEN

AIMS/HYPOTHESIS: Exosomes released from cells can transfer both functional proteins and RNAs between cells. In this study we tested the hypothesis that muscle cells might transmit specific signals during lipid-induced insulin resistance through the exosomal route. METHODS: Exosomes were collected from quadriceps muscles of C57Bl/6 mice fed for 16 weeks with either a standard chow diet (SD) or an SD enriched with 20% palm oil (HP) and from C2C12 cells exposed to 0.5 mmol/l palmitate (EXO-Post Palm), oleate (EXO-Post Oleate) or BSA (EXO-Post BSA). RESULTS: HP-fed mice were obese and insulin resistant and had altered insulin-induced Akt phosphorylation in skeletal muscle (SkM). They also had reduced expression of Myod1 and Myog and increased levels of Ccnd1 mRNA, indicating that palm oil had a deep impact on SkM homeostasis in addition to insulin resistance. HP-fed mouse SkM secreted more exosomes than SD-fed mouse SkM. This was reproduced in-vitro using C2C12 cells pre-treated with palmitate, the most abundant saturated fatty acid of palm oil. Exosomes from HP-fed mice, EXO-Post Palm and EXO-Post Oleate induced myoblast proliferation and modified the expressions of genes involved in the cell cycle and muscle differentiation but did not alter insulin-induced Akt phosphorylation. Lipidomic analyses showed that exosomes from palmitate-treated cells were enriched in palmitate, indicating that exosomes likely transfer the deleterious effect of palm oil between muscle cells by transferring lipids. Muscle exosomes were incorporated into various tissues in vivo, including the pancreas and liver, suggesting that SkM could transfer specific signals through the exosomal route to key metabolic tissues. CONCLUSIONS/INTERPRETATION: Exosomes act as 'paracrine-like' signals and modify muscle homeostasis during high-fat diets.


Asunto(s)
Exosomas/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Palmitatos/farmacología , Animales , Western Blotting , Línea Celular , Homeostasis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oléico/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Sci Rep ; 11(1): 19184, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584168

RESUMEN

Despite decades of use of low protein diets (LPD) in the management of chronic kidney disease (CKD), their mechanisms of action are unclear. A reduced production of uremic toxins could contribute to the benefits of LPDs. Aromatic amino-acids (AA) are precursors of major uremic toxins such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS). We hypothesize that a low aromatic amino acid diet (LA-AAD, namely a low intake of tyrosine, tryptophan and phenylalanine) while being normoproteic, could be as effective as a LPD, through the decreased production of uremic toxins. Kidney failure was chemically induced in mice with a diet containing 0.25% (w/w) of adenine. Mice received three different diets for six weeks: normoproteic diet (NPD: 14.7% proteins, aromatic AAs 0.019%), LPD (5% proteins, aromatic AAs 0.007%) and LA-AAD (14% proteins, aromatic AAs 0.007%). Both LPD and LA-AAD significantly reduced proteinuria, kidney fibrosis and inflammation. While LPD only slightly decreased plasma free PCS and free IS compared to NPD; free fractions of both compounds were significantly decreased by LA-AAD. These results suggest that a LA-AAD confers similar benefits of a LPD in delaying the progression of CKD through a reduction in some key uremic toxins production (such as PCS and IS), with a lower risk of malnutrition.


Asunto(s)
Aminoácidos Aromáticos/efectos adversos , Dieta con Restricción de Proteínas/métodos , Riñón/patología , Desnutrición/prevención & control , Insuficiencia Renal Crónica/dietoterapia , Animales , Dieta con Restricción de Proteínas/efectos adversos , Modelos Animales de Enfermedad , Fibrosis , Humanos , Masculino , Desnutrición/etiología , Ratones , Insuficiencia Renal Crónica/patología , Tóxinas Urémicas/metabolismo
7.
J Cachexia Sarcopenia Muscle ; 12(6): 2122-2133, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34704398

RESUMEN

BACKGROUND: Cerebral palsy (CP) associates cerebral function damages with strong locomotor defects and premature sarcopenia. We previously showed that fibroblast growth factor 19 (FGF19) exerts hypertrophic effects on skeletal muscle and improves muscle mass and strength in mouse models with muscle atrophy. Facing the lack of therapeutics to treat locomotor dysfunctions in CP, we investigated whether FGF19 treatment could have beneficial effects in an experimental rat model of CP. METHODS: Cerebral palsy was induced in male Wistar rat pups by perinatal anoxia immediately after birth and by sensorimotor restriction of hind paws maintained until Day 28. Daily subcutaneous injections with recombinant human FGF19 (0.1 mg/kg bw) were performed from Days 22 to 28. Locomotor activity and muscle strength were assessed before and after FGF19 treatment. At Day 29, motor coordination on rotarod and various musculoskeletal parameters (weight of tibia bone and of soleus and extensor digitorum longus (EDL) muscles; area of skeletal muscle fibres) were evaluated. In addition, expression of specific genes linked to human CP was measured in rat skeletal muscles. RESULTS: Compared to controls, CP rats had reduced locomotion activity (-37.8% of distance travelled, P < 0.05), motor coordination (-88.9% latency of falls on rotarod, P < 0.05) and muscle strength (-25.1%, P < 0.05). These defects were associated with reduction in soleus (-51.5%, P < 0.05) and EDL (-42.5%, P < 0.05) weight, smaller area of muscle fibres, and with lower tibia weight (-38%, P < 0.05). In muscles from rats submitted to CP, changes in the expression levels of several genes related to muscle development and neuromuscular junctions were similar to those found in wrist muscle of children with CP (increased mRNA levels of Igfbp5, Kcnn3, Gdf8, and MyH4 and decreased expression of Myog, Ucp2 and Lpl). Compared with vehicle-treated CP rats, FGF19 administration improved locomotor activity (+53.2%, P < 0.05) and muscle strength (+25.7%, P < 0.05), and increased tibia weight (+13.8%, P < 0.05) and soleus and EDL muscle weight (+28.6% and +27.3%, respectively, P < 0.05). In addition, it reduced a number of very small fibres in both muscles (P < 0.05). Finally, gene expression analyses revealed that FGF19 might counteract the immature state of skeletal muscles induced by CP. CONCLUSIONS: These results demonstrate that pharmacological intervention with recombinant FGF19 could restore musculoskeletal and locomotor dysfunction in an experimental CP model, suggesting that FGF19 may represent a potential therapeutic strategy to combat the locomotor disorders associated with CP.


Asunto(s)
Parálisis Cerebral , Animales , Parálisis Cerebral/tratamiento farmacológico , Femenino , Factores de Crecimiento de Fibroblastos , Locomoción , Masculino , Ratones , Músculo Esquelético , Embarazo , Ratas , Ratas Wistar , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
8.
JCI Insight ; 6(10)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33857018

RESUMEN

BACKGROUNDHigh circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown.METHODSIn a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake.RESULTSMilk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut.CONCLUSIONMilk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL.TRIAL REGISTRATIONClinicalTrials.gov, NCT02099032, NCT02146339.FUNDINGANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).


Asunto(s)
Ceramidas , Metabolismo de los Lípidos/fisiología , Leche , Posmenopausia/metabolismo , Esfingomielinas , Animales , Ceramidas/análisis , Ceramidas/sangre , Ceramidas/metabolismo , Queso , Dieta , Heces/química , Femenino , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Sobrepeso , Esfingomielinas/análisis , Esfingomielinas/sangre , Esfingomielinas/metabolismo
9.
Stem Cell Res Ther ; 10(1): 85, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30867050

RESUMEN

BACKGROUND: Islets of Langerhans transplantation is a promising therapy for type 1 diabetes mellitus, but this technique is compromised by transplantation stresses including inflammation. In other tissues, co-transplantation with mesenchymal stem cells has been shown to reduce damage by improving anti-inflammatory and anti-oxidant defences. Therefore, we probed the protection afforded by bone marrow mesenchymal stem cells to islets under pro-inflammatory cytokine stress. METHODS: In order to evaluate the cytoprotective potential of mesenchymal stem cells on rat islets, co-cultures were exposed to the interleukin-1, tumour necrosis factor α and interferon γ cocktail for 24 h. Islet viability and functionality tests were performed. Reactive oxygen species and malondialdehyde were measured. Expression of stress-inducible genes acting as anti-oxidants and detoxifiers, such as superoxide dismutases 1 and 2, NAD(P)H quinone oxidoreductase 1, heme oxygenase-1 and ferritin H, was compared to non-stressed cells, and the corresponding proteins were measured. Data were analysed by a two-way ANOVA followed by a Holm-Sidak post hoc analysis. RESULTS: Exposure of rat islets to cytokines induces a reduction in islet viability and functionality concomitant with an oxidative status shift with an increase of cytosolic ROS production. Mesenchymal stem cells did not significantly increase rat islet viability under exposure to cytokines but protected islets from the loss of insulin secretion. A drastic reduction of the antioxidant factors heme oxygenase-1 and ferritin H protein levels was observed in islets exposed to the cytokine cocktail with a prevention of this effect by the presence of mesenchymal stem cells. CONCLUSIONS: Our data evidenced that MSCs are able to preserve islet insulin secretion through a modulation of the oxidative imbalance mediated by heme and iron via heme oxygenase-1 and ferritin in a context of cytokine exposure.


Asunto(s)
Citocinas/farmacología , Ferritinas/biosíntesis , Hemo Oxigenasa (Desciclizante)/biosíntesis , Islotes Pancreáticos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Técnicas de Cocultivo , Humanos , Islotes Pancreáticos/citología , Células Madre Mesenquimatosas/citología , Ratas
10.
Mol Nutr Food Res ; 63(11): e1801148, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30848861

RESUMEN

SCOPE: Obese adipose tissue (AT) is infiltrated by inflammatory immune cells including IL-17A-producing-T (Th17) cells. It has been previously demonstrated that adipose-derived stem cells from obese (ob-ASCs), but not lean AT promote Th17 cells. Because n-3 PUFAs are known to inhibit obese AT inflammation, it is tested here whether they could inhibit ob-ASC-mediated IL-17A secretion. METHODS AND RESULTS: The n-3 PUFA precursor, alpha-linolenic acid (ALA), or its derivatives, eicosapentaenoic, or docosahexaenoic acid, is added to co-cultures of human ob-ASCs and mononuclear cells (MNCs). All three inhibited IL-17A, but not IL-1ß, IL-6, nor TNFα  secretion. As a control, palmitic acid (PA), a saturated fatty acid, did not inhibit IL-17A secretion. ALA also inhibited IL-17A secretion mediated by adipocytes differentiated from ob-ASCs. Toll-like-receptor 4 is shown to be involved in ob-ASC-mediated-IL-17A secretion, and to be inhibited by ALA, together with Cyclo-Oxygenase-2 and Signal-Transducer-and-Activator-of-transcription-3. In addition, ALA down-regulated Intercellular-Adhesion-Molecule-1 (ICAM-1) expression in both monocytes and ASCs, which resulted in decreased interactions between ob-ASCs and MNCs, and inhibition of IL-17A secretion. CONCLUSION: It is demonstrated herein that ALA inhibits Th17 cell promotion, through decreased ICAM-1expression in both ob-ASCs and monocytes. This novel mechanism may contribute to explain the beneficial effects of n-3 PUFA in IL-17A-related inflammatory pathologies.


Asunto(s)
Tejido Adiposo/citología , Ácidos Grasos Omega-3/farmacología , Molécula 1 de Adhesión Intercelular/genética , Interleucina-17/antagonistas & inhibidores , Obesidad/metabolismo , Células Madre/fisiología , Células Th17/efectos de los fármacos , Agregación Celular/efectos de los fármacos , Técnicas de Cocultivo , Humanos , Interleucina-17/biosíntesis , Factor de Transcripción STAT3/antagonistas & inhibidores , Células Madre/efectos de los fármacos , Células Madre/inmunología , Células Th17/inmunología , Receptor Toll-Like 4/antagonistas & inhibidores , Ácido alfa-Linolénico/farmacología
11.
Diabetes ; 68(9): 1778-1794, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31175102

RESUMEN

Glucotoxicity-induced ß-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. The role of MAMs in ß-cells is still largely unknown, and their implication in glucotoxicity-associated ß-cell dysfunction remains to be defined. Here, we report that acute glucose treatment stimulated ER-mitochondria interactions and calcium (Ca2+) exchange in INS-1E cells, whereas disruption of MAMs altered glucose-stimulated insulin secretion (GSIS). Conversely, chronic incubations with high glucose of either INS-1E cells or human pancreatic islets altered GSIS and concomitantly reduced ER Ca2+ store, increased basal mitochondrial Ca2+, and reduced ATP-stimulated ER-mitochondria Ca2+ exchanges, despite an increase of organelle interactions. Furthermore, glucotoxicity-induced perturbations of Ca2+ signaling are associated with ER stress, altered mitochondrial respiration, and mitochondria fragmentation, and these organelle stresses may participate in increased organelle tethering as a protective mechanism. Last, sustained induction of ER-mitochondria interactions using a linker reduced organelle Ca2+ exchange, induced mitochondrial fission, and altered GSIS. Therefore, dynamic organelle coupling participates in GSIS in ß-cells, and over time, disruption of organelle Ca2+ exchange might be a novel mechanism contributing to glucotoxicity-induced ß-cell dysfunction.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Ratas
12.
J Nutr Biochem ; 45: 83-93, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28433925

RESUMEN

Environmental pollutants are potential etiologic factors of obesity and diabetes that reach epidemic proportions worldwide. However, it is important to determine if pollutants could exert metabolic defects without directly inducing obesity. The metabolic disturbances triggered in nonobese mice lifelong exposed to a mixture of low-dose pollutants (2,3,7,8-tetrachlorodibenzo-p-dioxine, polychlorinated biphenyl 153, diethylhexyl-phthalate, and bisphenol A) were compared with changes provoked by a high-fat high-sucrose (HFHS) diet not containing the pollutant mixture. Interestingly, females exposed to pollutants exhibited modifications in lipid homeostasis including a significant increase of hepatic triglycerides but also distinct features from those observed in diet-induced obese mice. For example, they did not gain weight nor was glucose tolerance impacted. To get more insight, a transcriptomic analysis was performed in liver for comparison. We observed that in addition to the xenobiotic/drug metabolism pathway, analysis of the hepatic signature illustrated that the steroid/cholesterol, fatty acid/lipid and circadian clock metabolic pathways were targeted in response to pollutants as observed in the diet-induced obese mice. However, the specific sets of dysregulated annotated genes (>1300) did not overlap more than 40% between both challenges with some genes specifically altered only in response to pollutant exposure. Collectively, results show that pollutants and HFHS affect common metabolic pathways, but by different, albeit overlapping, mechanisms. This is highly relevant for understanding the synergistic effects between pollutants and the obesogenic diet reported in the literature.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Contaminantes Ambientales/administración & dosificación , Contaminantes Ambientales/toxicidad , Hígado/efectos de los fármacos , Animales , Compuestos de Bencidrilo/administración & dosificación , Compuestos de Bencidrilo/toxicidad , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Duodeno/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inactivación Metabólica/genética , Resistencia a la Insulina , Hígado/fisiología , Ratones Endogámicos C57BL , Fenoles/administración & dosificación , Fenoles/toxicidad , Dibenzodioxinas Policloradas/administración & dosificación , Dibenzodioxinas Policloradas/toxicidad , Reproducibilidad de los Resultados , Esteroides/biosíntesis
13.
Sci Rep ; 7(1): 11267, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924247

RESUMEN

Our objectives were to determine if there are quantitative associations between amounts and intensities of physical activities (PA) on NMR biomarkers and changes in skeletal muscle gene expressions in subjects with high risk for type 2 diabetes (T2D) performing a 3-month PA intervention. We found that PA was associated with beneficial biomarker changes in a factor containing several VLDL and HDL subclasses and lipids in principal component analysis (P = <0.01). Division of PA into quartiles demonstrated significant changes in NMR biomarkers in the 2nd - 4th quartiles compared to the 1st quartile representing PA of less than 2850 daily steps (P = 0.0036). Mediation analysis of PA-related reductions in lipoproteins showed that the effects of PA was 4-15 times greater than those of body weight or fat mass reductions. In a subset study in highly active subjects' gene expressions of oxidative fiber markers, Apo D, and G0/G1 Switch Gene 2, controlling insulin signaling and glucose metabolism were significantly increased. Slow walking at speeds of 2-3 km/h exceeding 2895 steps/day attenuated several circulating lipoprotein lipids. The effects were mediated rather by PA than body weight or fat loss. Thus, lower thresholds for PA may exist for long term prevention of cardio-metabolic diseases in sedentary overweight subjects.


Asunto(s)
Ejercicio Físico , Regulación de la Expresión Génica , Imagen por Resonancia Magnética , Proteínas Musculares/biosíntesis , Músculo Esquelético , Adulto , Biomarcadores/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo
14.
Nat Med ; 23(8): 990-996, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28650457

RESUMEN

The endocrine-derived hormone fibroblast growth factor (FGF) 19 has recently emerged as a potential target for treating metabolic disease. Given that skeletal muscle is a key metabolic organ, we explored the role of FGF19 in that tissue. Here we report a novel function of FGF19 in regulating skeletal muscle mass through enlargement of muscle fiber size, and in protecting muscle from atrophy. Treatment with FGF19 causes skeletal muscle hypertrophy in mice, while physiological and pharmacological doses of FGF19 substantially increase the size of human myotubes in vitro. These effects were not elicited by FGF21, a closely related endocrine FGF member. Both in vitro and in vivo, FGF19 stimulates the phosphorylation of the extracellular-signal-regulated protein kinase 1/2 (ERK1/2) and the ribosomal protein S6 kinase (S6K1), an mTOR-dependent master regulator of muscle cell growth. Moreover, mice with a skeletal-muscle-specific genetic deficiency of ß-Klotho (KLB), an obligate co-receptor for FGF15/19 (refs. 2,3), were unresponsive to the hypertrophic effect of FGF19. Finally, in mice, FGF19 ameliorates skeletal muscle atrophy induced by glucocorticoid treatment or obesity, as well as sarcopenia. Taken together, these findings provide evidence that the enterokine FGF19 is a novel factor in the regulation of skeletal muscle mass, and that it has therapeutic potential for the treatment of muscle wasting.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular , Obesidad , Sarcopenia , Animales , Western Blotting , Tamaño de la Célula/efectos de los fármacos , Glucocorticoides/farmacología , Fuerza de la Mano , Humanos , Inmunohistoquímica , Inmunoprecipitación , Técnicas In Vitro , Proteínas Klotho , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Tamaño de los Órganos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Transcriptoma
15.
J Clin Endocrinol Metab ; 100(9): 3427-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26151336

RESUMEN

CONTEXT: Postprandial endotoxemia is a metabolic risk factor, which has been shown to originate from the intestinal absorption of gut lipopolysaccharides (LPS) using nonphysiological high-fat tests. OBJECTIVE: This study aimed to determine whether different realistic fat amounts can modulate postprandial dynamics and handling of LPS by varying postprandial lipidemia in humans of different body mass indices. DESIGN, SETTING, AND PARTICIPANTS: In a randomized, controlled, cross-over study in nutrition research center, eight normal-weight (NW) and eight obese age-matched men, without diabetes nor dyslipidemia, ingested breakfasts containing 10 vs 40 g fat. Blood samples, leukocytes, and chylomicron-rich fractions were obtained during 8 h. Plasma and chylomicron-endotoxemia, plasma LPS transporters (LBP, sCD14) and IL-6, nuclear factor κB (NF-κB) translocation, and IL-6 gene expression of immune cells were measured. MAIN OUTCOME: The postprandial fatty acid handling after ingesting 40 g fat was previously published as primary outcome. The secondary outcomes were inflammatory ones including postprandial endotoxemia, LPS handling, and plasma markers of inflammation after ingesting 10 or 40 g fat. RESULTS: Chylomicronemia increased in all subjects according to ingested fat amount (P < .01), but only obese had higher postprandial endotoxemia after 40 g (P < .05). Obese subject chylomicrons were more enriched with LPS compared with NW (PBMI < .01). We observed neither NF-κB translocation, nor variation of IL-6 expression in leukocytes. In both groups, fat amount did not modify postprandial response of plasma IL-6. However, the area under the curve (AUC) of IL-6 in obese was higher than in NW (P < .05) parallel to higher fasting LPS-binding protein (LBP; P < .05). AUC of IL-6 was correlated with LBP (P < .01). CONCLUSION: Postprandial endotoxemia is modulated by ingested fat amount in obese men. LPS handling in plasma through chylomicrons and LBP seems critical in driving the acute inflammatory response. The pathophysiological importance of repeated postprandial endotoxemia excursions and their contribution to a vicious cycle of LBP-driven low-grade inflammation deserve further investigation in the nutritional management of cardio-metabolic risk prevention.


Asunto(s)
Quilomicrones/sangre , Endotoxemia/sangre , Lipopolisacáridos/sangre , Obesidad/sangre , Periodo Posprandial/fisiología , Proteínas de Fase Aguda , Adulto , Glucemia , Índice de Masa Corporal , Proteínas Portadoras/sangre , Estudios Cruzados , Grasas de la Dieta , Relación Dosis-Respuesta a Droga , Humanos , Insulina/sangre , Masculino , Glicoproteínas de Membrana/sangre
16.
Diabetes ; 64(3): 1011-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25277399

RESUMEN

A growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin levels, but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 parts per million), we demonstrated that exposure of rats to ozone induced whole-body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, c-Jun N-terminal kinase (JNK) activation, and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pretreatment with the chemical chaperone 4-phenylbutyric acid, the JNK inhibitor SP600125, or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic diseases.


Asunto(s)
Resistencia a la Insulina/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ozono/toxicidad , Acetilcisteína/farmacología , Animales , Antracenos/farmacología , Líquido del Lavado Bronquioalveolar/química , Línea Celular , Activación Enzimática/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Ratones , Fenilbutiratos/farmacología , Ratas
17.
Cell Cycle ; 13(1): 78-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24196440

RESUMEN

It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as "endocrine signals" during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube-exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/biosíntesis , Mioblastos/metabolismo , Sirtuinas/biosíntesis , Animales , Exosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Ratones , MicroARNs/clasificación , MicroARNs/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mioblastos/citología , Sirtuinas/genética
18.
Nutrition ; 29(5): 730-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23375525

RESUMEN

OBJECTIVE: The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) in cardiovascular disease are partly attributed to their anti-inflammatory properties. Their potential effect on the adipose tissue of chronic kidney disease (CKD) patients has never been explored. METHODS: To determine the metabolic effect of supplementation with two different doses of fish oil (FO), 12 non-dialyzed patients with stage IV/V CKD were randomly allocated to receive 1.8 g or 3.6 g/d of ω-3 PUFA for 10 wk. Metabolic parameters, adipose tissue function, and gene expression were evaluated at baseline and 10 wk. RESULTS: Body weight, fat mass, energy intake, fasting glucose, and insulin were unchanged. The daily intake of 3.6 g of ω-3 PUFA resulted in decreased serum triacylglycerol and increased high-density lipoprotein cholesterol, whereas low-density lipoprotein cholesterol increased with 1.8 g of ω-3 PUFA. Serum adiponectin, leptin, C-reactive protein, and tumor necrosis factor-α were not modified in either group. Interleukin-6 levels tended to decrease with 1.8 g of ω-3 PUFA. Additionally, a subset of inflammation-related genes (CD68 and MMP9) was reduced in subcutaneous adipose tissue in this group. Adiponectin, leptin, and adipoR2 gene expression were upregulated with 3.6 g of ω-3 PUFA. CONCLUSIONS: A moderate dose of FO alters the gene expression profile of adipose tissue to a more antiinflammatory status. Higher doses of FO have a favorable effect on lipid profile and lead to the upregulation of adipokines gene expression suggesting a different dose response to ω-3 PUFA administration in patients with CKD.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Aceites de Pescado/administración & dosificación , Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Lípidos/sangre , Insuficiencia Renal Crónica/tratamiento farmacológico , Adipoquinas/genética , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ingestión de Energía/efectos de los fármacos , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Femenino , Aceites de Pescado/farmacología , Aceites de Pescado/uso terapéutico , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucina-5/sangre , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo , Regulación hacia Arriba
19.
Nutr Res ; 33(11): 952-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24176235

RESUMEN

Animal studies using a high-fat diet (HFD) have studied the effects of lipid overconsumption by comparing a defined HFD either with a natural-ingredient chow diet or with a defined low-fat diet (LFD), despite the dramatic differences between these control diets. We hypothesized that these differences in the control diet could modify the conclusions regarding the effects that an increase of fat in the diet has on several metabolic parameters. For 11 weeks, C57bl6/J mice were fed a low-fat chow diet (8% energy from fat), a typical semisynthetic LFD (12%), or a semisynthetic HFD (sy-HF) (40%). Conclusions about the effect of sy-HF on body weight gain, subcutaneous adipose tissue, insulin sensitivity, and adipose tissue inflammation were modified according to the control LFD. Conversely, conclusions about epididymal and retroperitoneal adipose tissue; fat intake effects on liver and muscular lipids, cholesterol, free fatty acids, and markers of low-grade inflammation; and of adipose tissue macrophage infiltration were the same regardless of the use of low-fat chow diet or semisynthetic LFD. For some physiological outcomes, conflicting conclusions were even reached about the effects of increased fat intake according to the chosen low-fat control. Some deleterious effects of sy-HF may not be explained by lipid overconsumption but rather by the overall quality of ingredients in a semisynthetic diet. According to the control LFD chosen, conclusions on the lipid-related effects of HFDs must be formulated with great care because some end points are profoundly affected by the ingredient composition of the diet rather than by fat content.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad , Investigación Biomédica/métodos , Dieta Alta en Grasa/efectos adversos , Inflamación/etiología , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Dieta con Restricción de Grasas/normas , Grasas de la Dieta/administración & dosificación , Ingestión de Energía , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Grasa Subcutánea/metabolismo , Aumento de Peso
20.
Diabetes Care ; 36(6): 1454-61, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23275372

RESUMEN

OBJECTIVE: To assess the clinical efficacy of nutritional amounts of grape polyphenols (PPs) in counteracting the metabolic alterations of high-fructose diet, including oxidative stress and insulin resistance (IR), in healthy volunteers with high metabolic risk. RESEARCH DESIGN AND METHODS: Thirty-eight healthy overweight/obese first-degree relatives of type 2 diabetic patients (18 men and 20 women) were randomized in a double-blind controlled trial between a grape PP (2 g/day) and a placebo (PCB) group. Subjects were investigated at baseline and after 8 and 9 weeks of supplementation, the last 6 days of which they all received 3 g/kg fat-free mass/day of fructose. The primary end point was the protective effect of grape PPs on fructose-induced IR. RESULTS: In the PCB group, fructose induced 1) a 20% decrease in hepatic insulin sensitivity index (P < 0.05) and an 11% decrease in glucose infusion rate (P < 0.05) as evaluated during a two-step hyperinsulinemic-euglycemic clamp, 2) an increase in systemic (urinary F2-isoprostanes) and muscle (thiobarbituric acid-reactive substances and protein carbonylation) oxidative stress (P < 0.05), and 3) a downregulation of mitochondrial genes and decreased mitochondrial respiration (P < 0.05). All the deleterious effects of fructose were fully blunted by grape PP supplementation. Antioxidative defenses, inflammatory markers, and main adipokines were affected neither by fructose nor by grape PPs. CONCLUSIONS: A natural mixture of grape PPs at nutritional doses efficiently prevents fructose-induced oxidative stress and IR. The current interest in grape PP ingredients and products by the global food and nutrition industries could well make them a stepping-stone of preventive nutrition.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fructosa/efectos adversos , Resistencia a la Insulina/fisiología , Estrés Oxidativo/efectos de los fármacos , Polifenoles/uso terapéutico , Vitis/química , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polifenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA