Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Mol Life Sci ; 78(7): 3333-3354, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33439271

RESUMEN

In recent years, cellular senescence has become the focus of attention in multiple areas of biomedical research. Typically defined as an irreversible cell cycle arrest accompanied by increased cellular growth, metabolic activity and by a characteristic messaging secretome, cellular senescence can impact on multiple physiological and pathological processes such as wound healing, fibrosis, cancer and ageing. These unjustly called 'zombie cells' are indeed a rich source of opportunities for innovative therapeutic development. In this review, we collate the current understanding of the process of cellular senescence and its two-faced nature, i.e. beneficial/detrimental, and reason this duality is linked to contextual aspects. We propose the senescence programme as an endogenous pro-resolving mechanism that may lead to sustained inflammation and damage when dysregulated or when senescent cells are not cleared efficiently. This pro-resolving model reconciles the paradoxical two faces of senescence by emphasising that it is the unsuccessful completion of the programme, and not senescence itself, what leads to pathology. Thus, pro-senescence therapies under the right context, may favour inflammation resolution. We also review the evidence for the multiple therapeutic approaches under development based on senescence, including its induction, prevention, clearance and the use of senolytic and senomorphic drugs. In particular, we highlight the importance of the immune system in the favourable outcome of senescence and the implications of an inefficient immune surveillance in completion of the senescent cycle. Finally, we identify and discuss a number of challenges and existing gaps to encourage and stimulate further research in this exciting and unravelled field, with the hope of promoting and accelerating the clinical success of senescence-based therapies.


Asunto(s)
Envejecimiento , Senescencia Celular , Fibrosis/patología , Sistema Inmunológico , Neoplasias/patología , Cicatrización de Heridas , Animales , Proliferación Celular , Humanos , Investigación Biomédica Traslacional
2.
J Cell Physiol ; 236(7): 4926-4943, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33284486

RESUMEN

Mesoglycan is a drug based on a mixture of glycosaminoglycans mainly used for the treatment of blood vessel diseases acting as antithrombotic and profibrinolytic drugs. Besides the numerous clinical studies, there is no information about its function on the fibrinolytic cascade. Here, we have elucidated the mechanism of action by which mesoglycan induces the activation of plasmin from endothelial cells. Surprisingly, by a proteomic analysis, we found that, following mesoglycan treatment, these cells show a notable amount of annexin A2 (ANXA2) at the plasma membrane. This protein has been widely associated with fibrinolysis and appears able to move to the membrane when phosphorylated. In our model, this translocation has proven to enhance cell migration, invasion, and angiogenesis. Furthermore, the interaction of mesoglycan with syndecan 4 (SDC4), a coreceptor belonging to the class of heparan sulfate proteoglycans, represents the upstream event of the ANXA2 behavior. Indeed, the activation of SDC4 triggers the motility of endothelial cells culminating in angiogenesis. Interestingly, mesoglycan can induce the release of plasmin in endothelial cell supernatants only in the presence of ANXA2. This evaluation suggests that mesoglycan triggers the formation of a chain mechanism starting from the activation of SDC4, and the related cascade of events, including src complex and PKCα activation, promoting the phosphorylation of ANXA2 and its translocation to plasma membrane. This indicates a connection among mesoglycan, SDC4-(PKCα-src), and ANXA2 which, in turn, links the tissue plasminogen activator bringing it closer to plasminogen. This latter is so cleaved to release the plasmin and degrade fibrin sleeves.


Asunto(s)
Fibrinolisina/metabolismo , Fibrinólisis/fisiología , Fibrinolíticos/farmacología , Glicosaminoglicanos/farmacología , Activador de Tejido Plasminógeno/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Fibrinólisis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Proteómica , Interferencia de ARN , ARN Interferente Pequeño/genética , Sindecano-4/genética , Sindecano-4/metabolismo
3.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681678

RESUMEN

The tumor microenvironment (TME) is a dynamic system where nontumor and cancer cells intercommunicate through soluble factors and extracellular vesicles (EVs). The TME in pancreatic cancer (PC) is critical for its aggressiveness and the annexin A1 (ANXA1) has been identified as one of the oncogenic elements. Previously, we demonstrated that the autocrine/paracrine activities of extracellular ANXA1 depend on its presence in EVs. Here, we show that the complex ANXA1/EVs modulates the macrophage polarization further contributing to cancer progression. The EVs isolated from wild type (WT) and ANXA1 knock-out MIA PaCa-2 cells have been administrated to THP-1 macrophages finding that ANXA1 is crucial for the acquisition of a protumor M2 phenotype. The M2 macrophages activate endothelial cells and fibroblasts to induce angiogenesis and matrix degradation, respectively. We have also found a significantly increased presence of M2 macrophage in mice tumor and liver metastasis sections previously obtained by orthotopic xenografts with WT cells. Taken together, our data interestingly suggest the relevance of ANXA1 as potential diagnostic/prognostic and/or therapeutic PC marker.


Asunto(s)
Anexina A1/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/inmunología , Neovascularización Patológica , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Animales , Anexina A1/inmunología , Línea Celular Tumoral , Células Endoteliales/fisiología , Fibroblastos/fisiología , Humanos , Activación de Macrófagos , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/fisiopatología
4.
J Cell Physiol ; 234(11): 20174-20192, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30963564

RESUMEN

Wound healing is a dynamic process comprising multiple events, such as inflammation, re-epithelialization, and tissue remodeling. Re-epithelialization phase is characterized by the engagement of several cell populations, mainly of keratinocytes that sequentially go through cycles of migration, proliferation, and differentiation to restore skin functions. Troubles can arise during the re-epithelialization phase of skin wound healing particularly in keratinocyte migration, resulting in chronic non-healing lesions, which represent a serious clinical problem. Over the last decades, the efforts aimed to find new pharmacological approaches for wound care were made, yet almost all current therapeutic strategies used remain inadequate or even ineffective. As such, it is crucial to identify new drugs that can enable a proper regeneration of the epithelium in wounded skin. Here, we have investigated the effects of the fibrinolytic drug mesoglycan, a glycosaminoglycans mixture derived from porcine intestinal mucosa on HaCaT human keratinocytes that were used as in vitro experimental model of skin re-epithelialization. We found that mesoglycan induces keratinocyte migration and early differentiation by triggering the syndecan-4/PKCα pathway and that these effects were at least in part, because of the formation of the annexin A1/S100A11 complex. Our data suggest that mesoglycan may be useful as a new pro-healing drug for skin wound care.


Asunto(s)
Anexina A1/metabolismo , Glicosaminoglicanos/metabolismo , Queratinocitos/metabolismo , Proteínas S100/metabolismo , Sindecano-4/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Humanos , Repitelización/fisiología , Piel/metabolismo , Cicatrización de Heridas/fisiología
5.
Int J Mol Sci ; 19(7)2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986379

RESUMEN

Annexin A1 (ANXA1) is a Ca2+-binding protein that is involved in pancreatic cancer (PC) progression. It is able to mediate cytoskeletal organization maintaining a malignant phenotype. Our previous studies showed that ANXA1 Knock-Out (KO) MIA PaCa-2 cells partially lost their migratory and invasive capabilities and also the metastatization process appeared affected in vivo. Here, we investigated the microRNA (miRNA) profile in ANXA1 KO cells finding that the modification in miRNA expression suggests the significant involvement of ANXA1 in PC development. In this study, we focused on miR-196a which appeared down modulated in absence of ANXA1. This miRNA is a well known oncogenic factor in several tumour models and it is able to trigger the agents of the epithelial to mesenchymal transition (EMT), like ANXA1. Our results show that the reintroduction in ANXA1 KO cells of miR-196a through the mimic sequence restored the early aggressive phenotype of MIA PaCa-2. Then, ANXA1 seems to support the expression of miR-196a and its role. On the other hand, this miRNA is able to mediate cytoskeletal dynamics and other protein functions promoting PC cell migration and invasion. This work describes the correlation between ANXA1 and specific miRNA sequences, particularly miR-196a. These results could lead to further information on ANXA1 intracellular role in PC, explaining other aspects that are apart from its tumorigenic behaviour.


Asunto(s)
Anexina A1/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Edición Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia
6.
Int J Mol Sci ; 19(12)2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518142

RESUMEN

Pancreatic Cancer (PC) is one of the most aggressive malignancies worldwide. As annexin A1 (ANXA1) is implicated in the establishment of tumour metastasis, the role of the protein in PC progression as a component of extracellular vesicles (EVs) has been investigated. EVs were isolated from wild type (WT) and ANXA1 knock-out (KO) PC cells and then characterised by multiple approaches including Western blotting, Field Emission-Scanning Electron Microscopy, and Dynamic Light Scattering. The effects of ANXA1 on tumour aggressiveness were investigated by Wound-Healing and invasion assays and microscopic analysis of the Epithelial to Mesenchymal Transition (EMT). The role of ANXA1 on angiogenesis was also examined in endothelial cells, using similar approaches. We found that WT cells released more EVs enriched in exosomes than those from cells lacking ANXA1. Notably, ANXA1 KO cells recovered their metastatic potential only when treated by WT EVs as they underwent EMT and a significant increase of motility. Similarly, human umbilical vein endothelial cells (HUVEC) migrated and invaded more rapidly when treated by WT EVs whereas ANXA1 KO EVs weakly induced angiogenesis. This study suggests that EVs-related ANXA1 is able to promote cell migration, invasion, and angiogenesis, confirming the relevance of this protein in PC progression.


Asunto(s)
Anexina A1/metabolismo , Progresión de la Enfermedad , Vesículas Extracelulares/metabolismo , Modelos Biológicos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Movimiento Celular , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Técnicas de Inactivación de Genes , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Invasividad Neoplásica , Fenotipo
7.
Cell Calcium ; 123: 102926, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38959763

RESUMEN

Two recent papers have highlighted that STIM1, a key component of Store-operated Ca2+-entry, is able to translocate to the nucleus and participate in nuclear Ca2+-handling and in DNA repair. These finding opens new avenues on the role that this Ca2+-sensing protein may have in health and disease.

8.
PLoS One ; 19(2): e0297872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330065

RESUMEN

Macrophages, key players in the innate immune system, showcase remarkable adaptability. Derived from monocytes, these phagocytic cells excel in engulfing and digesting pathogens and foreign substances as well as contributing to antigen presentation, initiating and regulating adaptive immunity. Macrophages are highly plastic, and the microenvironment can shaper their phenotype leading to numerous distinct polarized subsets, exemplified by the two ends of the spectrum: M1 (classical activation, inflammatory) and M2 (alternative activation, anti-inflammatory). RNA sequencing (RNA-Seq) has revolutionized molecular biology, offering a comprehensive view of transcriptomes. Unlike microarrays, RNA-Seq detects known and novel transcripts, alternative splicing, and rare transcripts, providing a deeper understanding of genome complexity. Despite the decreasing costs of RNA-Seq, data consolidation remains limited, hindering noise reduction and the identification of authentic signatures. Macrophages polarization is routinely ascertained by qPCR to evaluate those genes known to be characteristic of M1 or M2 skewing. Yet, the choice of these genes is literature- and experience-based, lacking therefore a systematic approach. This manuscript builds on the significant increase in deposited RNA-Seq datasets to determine an unbiased and robust murine M1 and M2 polarization profile. We now provide a consolidated list of global M1 differentially expressed genes (i.e. robustly modulated by IFN-γ, LPS, and LPS+ IFN-γ) as well as consolidated lists of genes modulated by each stimulus (IFN-γ, LPS, LPS+ IFN-γ, and IL-4).


Asunto(s)
Lipopolisacáridos , Macrófagos , Animales , Ratones , Lipopolisacáridos/farmacología , Monocitos , Fenotipo , Transcriptoma , Activación de Macrófagos/genética
9.
Eur J Pharmacol ; 960: 176138, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37923158

RESUMEN

Effective treatment strategies for skin wound repair are the focus of numerous studies. New pharmacological approaches appear necessary to guarantee a correct and healthy tissue regeneration. For these reasons, we purposed to investigate the effects of the combination between heparan sulfate and growth factors further adding the heparinase enzyme. Interestingly, for the first time, we have found that this whole association retains a marked pro-healing activity when topically administered to the wound. In detail, this combination significantly enhances the motility and activation of the main cell populations involved in tissue regeneration (keratinocytes, fibroblasts and endothelial cells), compared with single agents administered without heparinase. Notably, using an experimental C57BL/6 mouse model of skin wounding, we observed that the topical treatment of skin lesions with heparan sulfate + growth factors + heparinase promotes the highest closure of wounds compared to each substance mixed with the other ones in all the possible combinations. Eosin/hematoxylin staining of skin biopsies revealed that treatment with the whole combination allows the formation of a well-structured matrix with numerous new vessels. Confocal analyses for vimentin, FAP1α, CK10 and CD31 have highlighted the presence of activated fibroblasts, differentiated keratinocytes and endothelial cells at the closed region of wounds. Our results encourage defining this combined treatment as a new and appealing therapy expedient in skin wound healing, as it is able to activate cell components and promote a dynamic lesions closure.


Asunto(s)
Células Endoteliales , Piel , Ratones , Animales , Liasa de Heparina/farmacología , Ratones Endogámicos C57BL , Cicatrización de Heridas , Heparitina Sulfato/farmacología
10.
Phytochemistry ; 202: 113310, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35863476

RESUMEN

The Phytochemical profiling of the root extract of Salvia leriifolia, an endemic plant of Iran, was investigated and 16 abietane diterpenes were isolated, and three were original compounds. 1D and 2D NMR and HRMS performed structural elucidation. The absolute configuration of the previously unreported compounds was determined by circular dichroism (ECD). The cytotoxicity of the isolated compounds was investigated against AGS, MIA PaCa-2, HeLa, and MCF-7 cell lines by the MTT assay. The known diterpene pisiferal possesses high cytotoxicity against all investigated cell lines at a concentration between 9.3 ± 0.6 and 14.38 ± 1.4 µM.


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Diterpenos , Salvia , Abietanos/química , Abietanos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Diterpenos/química , Humanos , Estructura Molecular , Salvia/química
11.
Cell Calcium ; 105: 102605, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636153

RESUMEN

Gain-of-function mutations on STIM1 and ORAI1 genes are responsible for an increased store-operated calcium entry, and underlie the characteristic symptoms of three overlapping ultra-rare genetic disorders (i.e tubular aggregate myopathy, Stormorken syndrome, York platelet syndrome) that can be grouped as tubular aggregate myopathies. These mutations lead to a wide spectrum of defects, which usually include muscle weakness and cramps. Negative modulators of store-operated Ca2+-entry targeting wild-type STIM1 and ORAI1 have entered clinical trials for a different array of disorders, including pancreatitis, COVID-19, cancer, and autoimmune disorders and, while efficacy data is awaited, safety data indicates tolerability of this STIM1/ORAI1 mutations are amenable to pharmacological intervention. If this were so, given that there are no approved treatments or clinical trials ongoing for these rare disorders, it could be envisaged that these agents could also rehabilitate tubular aggregate myopathy patients. In the present contribution we characterized the Ca2+-entry patterns induced by eleven STIM1 and three ORAI1 mutations in heterologous systems or in patient-derived cells, i.e. fibroblasts and myotubes, and evaluated the effect of CIC-37 and CIC-39, two novel store-operated calcium entry modulators. Our data show that all STIM1 and ORAI1 gain-of-function mutations tested, with the possible exception of the R304Q STIM1 mutation, are amenable to inhibition, albeit with slightly different sensitivities, paving the way to the development of SOCE modulators in tubular aggregate myopathies.


Asunto(s)
COVID-19 , Miopatías Estructurales Congénitas , Trastornos de las Plaquetas Sanguíneas , Calcio/metabolismo , Dislexia , Eritrocitos Anormales , Humanos , Ictiosis , Trastornos Migrañosos , Miosis , Fatiga Muscular , Mutación/genética , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Bazo/anomalías , Molécula de Interacción Estromal 1/genética
12.
Blood Adv ; 6(15): 4471-4484, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35696753

RESUMEN

Store-operated Ca2+-entry is a cellular mechanism that governs the replenishment of intracellular stores of Ca2+ upon depletion caused by the opening of intracellular Ca2+-channels. Gain-of-function mutations of the 2 key proteins of store-operated Ca2+-entry, STIM1 and ORAI1, are associated with several ultra-rare diseases clustered as tubular aggregate myopathies. Our group has previously demonstrated that a mouse model bearing the STIM1 p.I115F mutation recapitulates the main features of the STIM1 gain-of-function disorders: muscle weakness and thrombocytopenia. Similar findings have been found in other mice bearing different mutations on STIM1. At present, no valid treatment is available for these patients. In the present contribution, we report that CIC-39Na, a store-operated Ca2+-entry inhibitor, restores platelet number and counteracts the abnormal bleeding that characterizes these mice. Subtle differences in thrombopoiesis were observed in STIM1 p.I115F mice, but the main difference between wild-type and STIM1 p.I115F mice was in platelet clearance and in the levels of platelet cytosolic basal Ca2+. Both were restored on treatment of animals with CIC-39Na. This finding paves the way to a pharmacological treatment strategy for thrombocytopenia in tubular aggregate myopathy patients.


Asunto(s)
Miopatías Estructurales Congénitas , Trombocitopenia , Animales , Calcio/metabolismo , Ratones , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Trombocitopenia/genética
13.
FEBS J ; 288(22): 6428-6446, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34058069

RESUMEN

Mesoglycan is a mixture of glycosaminoglycans (GAG) with fibrinolytic effects and the potential to enhance skin wound repair. Here, we have used endothelial cells isolated from wild-type (WT) and Syndecan-4 null (Sdc4-/-) C57BL/6 mice to demonstrate that mesoglycan promotes cell motility and in vitro angiogenesis acting on the co-receptor Syndecan-4 (SDC4). This latter is known to participate in the formation and release of extracellular vesicles (EVs). We characterized EVs released by HUVECs and assessed their effect on angiogenesis. Particularly, we focused on Annexin A1 (ANXA1) containing EVs, since they may contribute to tube formation via interactions with Formyl peptide receptors (FPRs). In our model, the bond ANXA1-FPRs stimulates the release of vascular endothelial growth factor (VEGF-A) that interacts with vascular endothelial receptor-2 (VEGFR2) and activates the pathway enhancing cell motility in an autocrine manner, as shown by wound healing/invasion assays, and the induction of endothelial to mesenchymal transition (EndMT). Thus, we have shown for the first time that mesoglycan exerts its pro-angiogenic effects in the healing process triggering the activation of the three interconnected molecular axis: mesoglycan-SDC4, EVs-ANXA1-FPRs, and VEGF-A-VEGFR2.


Asunto(s)
Anexina A1/metabolismo , Glicosaminoglicanos/metabolismo , Neovascularización Fisiológica , Receptores de Formil Péptido/metabolismo , Sindecano-4/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Humanos
14.
Eur J Pharm Sci ; 163: 105886, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34022411

RESUMEN

Skin wound repair represents an important topic for the therapeutic challenges. Many molecules are commonly used as active principles of topical devices to induce the correct tissue regeneration. Among these molecules, mesoglycan, a mixture of glycosaminoglycans, and the lactoferrin have recently aroused interest. Here, for the first time, we used mesoglycan/lactoferrin to treat the cell populations mainly involved in wound healing. We showed that human keratinocytes, fibroblasts and endothelial cells migrate and invade more rapidly when treated with the association. Moreover, we found that mesoglycan/lactoferrin, are able to trigger the differentiation process of keratinocytes, the switch of the fibroblasts into myofibroblasts, the acquisition of a mesenchymal phenotype for the endothelial cells which, in this way, start to form the capillary-like structures. Additionally, we proved that the well known antimicrobial behavior of lactoferrin encourages the inhibition of S. aureus and P. aeruginosa biofilm formation by the whole association, providing an appealing feature for this formulation. Finally, by the in vivo analysis, we showed that the mesoglycan/lactoferrin favors the closure of skin wounds performed on the mice back. Beside the decrease of the lesion diameters, by a confocal analysis of mice biopsies we found that the use of the association strongly promote cell activation underlying the correct tissue regeneration. These results encourage to further investigation aiming the development of a new topical patch that includes this association.


Asunto(s)
Células Endoteliales , Lactoferrina , Animales , Glicosaminoglicanos , Queratinocitos , Ratones , Piel , Staphylococcus aureus
15.
Biochem Pharmacol ; 182: 114252, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32998001

RESUMEN

In pancreatic cancer (PC) progression the protein Annexin A1 (ANXA1) has been described as oncogenic factor. Thus, the need to inhibit its action, mainly the extracellular form, has become an appealing cue for the anti-cancer research. Heparan sulfate (HS) is a glycosaminoglycan of the extracellular matrix known to bind several molecules, as growth factors and cytokines, generating a kind of reservoir in the extracellular environment. Here, we started our study by showing the physical calcium-dependent interaction between HS and ANXA1 as both full-length protein and N-terminal portion, Ac2-26 by biophysical techniques. HS is able to inhibit the migration/invasion process of human PC MIA PaCa-2 cells and partially revert their mesenchymal phenotype as reported through the expression of specific protein markers and the growth in colonies and in 3D-spheroids. Furthermore, both on MIA PaCa-2 and PANC-1 cells, HS blocks the effects of Ac2-26, which enhances the aggressive behavior of PC cells if added alone. These effects appear evident also on endothelial cells whose activation is promoted by Ac2-26 but not in presence of HS. Thus, the interference of the interaction ANXA1-HS on angiogenesis strongly emerges. Moreover, once sequestered by HS, ANXA1 is not more able to bind the formil-peptide receptors (FPRs) preventing the increase of calcium mobilization, peculiar for cell motility. These findings introduce a new important tale in the knowledge about the inhibition of the ANXA1 action in PC development. Further information will be useful to highlight the interaction of HS with the protein, focusing on the characterization of the glycosaminoglycan and on in vivo assays.


Asunto(s)
Anexina A1/metabolismo , Movimiento Celular/fisiología , Líquido Extracelular/metabolismo , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología , Neoplasias Pancreáticas/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Líquido Extracelular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología
16.
Cells ; 9(12)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353163

RESUMEN

Pancreatic cancer (PC) is one of the most aggressive cancers in the world. Several extracellular factors are involved in its development and metastasis to distant organs. In PC, the protein Annexin A1 (ANXA1) appears to be overexpressed and may be identified as an oncogenic factor, also because it is a component in tumor-deriving extracellular vesicles (EVs). Indeed, these microvesicles are known to nourish the tumor microenvironment. Once we evaluated the autocrine role of ANXA1-containing EVs on PC MIA PaCa-2 cells and their pro-angiogenic action, we investigated the ANXA1 paracrine effect on stromal cells like fibroblasts and endothelial ones. Concerning the analysis of fibroblasts, cell migration/invasion, cytoskeleton remodeling, and the different expression of specific protein markers, all features of the cell switching into myofibroblasts, were assessed after administration of wild type more than ANXA1 Knock-Out EVs. Interestingly, we demonstrated a mechanism by which the ANXA1-EVs complex can stimulate the activation of formyl peptide receptors (FPRs), triggering mesenchymal switches and cell motility on both fibroblasts and endothelial cells. Therefore, we highlighted the importance of ANXA1/EVs-FPR axes in PC progression as a vehicle of intercommunication tumor cells-stroma, suggesting a specific potential prognostic/diagnostic role of ANXA1, whether in soluble form or even if EVs are captured in PC.


Asunto(s)
Anexina A1/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/metabolismo , Receptores de Formil Péptido/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Movimiento Celular , Colágeno , Citoesqueleto/metabolismo , Progresión de la Enfermedad , Combinación de Medicamentos , Células Endoteliales/metabolismo , Exosomas , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Laminina , Microscopía Confocal , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Proteoglicanos , Cicatrización de Heridas
17.
Eur J Pharmacol ; 869: 172894, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31883916

RESUMEN

Mesoglycan is a fibrinolytic compound but recently promising pro-healing effects in skin wound repair have been reported. Previously, we have showed that mesoglycan activates human keratinocytes, fibroblasts and endothelial cells and induces the secretion of microvesicles (EVs), particularly exosomes, from keratinocytes. These EVs may contribute to wound healing since they further activate cells generating an autocrine loop with a positive feedback. In this work, EVs isolated from keratinocytes, treated with mesoglycan, have been tested on human fibroblasts and endothelial cells. The in vitro investigation has been carried out through Wound-Healing/invasion assays to analyze cell motility and assess the differentiation process. Then, the formation of capillary-like structures by human endothelial cells has been performed to evaluate in vitro angiogenesis. We found that EVs secreted from keratinocytes treated with mesoglycan promote fibroblasts and endothelial cells migration and invasion. Furthermore, these receiving cells acquire a mesenchymal phenotype. Additionally, the angiogenesis appears strongly enhanced in presence of this kind of EVs. In conclusion, we show that EVs deriving from keratinocytes trigger a paracrine positive feedback able to further amplify the effects of mesoglycan. This mechanism adds up to the autocrine loop previously reported and culminates with the activation of fibroblasts and endothelial cells. Particularly, this activation is amplified by the action of growth factors as FGF-2 (Fibroblast Growth Factor-2) for the fibroblasts and by VEGF (Vascular Endothelial Growth Factor) for the endothelial cells.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Exosomas/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Glicosaminoglicanos/farmacología , Queratinocitos/citología , Línea Celular , Movimiento Celular/efectos de los fármacos , Células Endoteliales/fisiología , Fibroblastos/fisiología , Humanos , Piel , Cicatrización de Heridas/efectos de los fármacos
18.
Pharmaceutics ; 11(12)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779148

RESUMEN

In this work, a one-shot process for the simultaneous foaming of polycaprolactone (PCL) and impregnation of mesoglycan (MSG) into the porous structure was successfully attempted. Supercritical carbon dioxide plays the role of the foaming agent with respect to PCL and of the solvent with respect to MSG. The main objective is to produce an innovative topical device for application on skin lesions, promoting prolonged pro-resolving effects. The obtained device offers a protective barrier to ensure a favorable and sterilized environment for the wound healing process. The impregnation kinetics revealed that a pressure of 17 MPa, a temperature of 35 °C, and a time of impregnation of 24 h assured a proper foaming of PCL in addition to the impregnation of the maximum amount of MSG; i.e., 0.22 mgMSG/mgPCL. After a preliminary study conducted on PCL granules used as brought, the MSG impregnation was performed at the optimized process conditions also on a PCL film, produced by compression molding, with the final goal of producing medical patches. Comparing the dissolution profiles in phosphate buffered saline solution (PBS) of pure MSG and MSG impregnated on foamed PCL, it was demonstrated that the release of MSG was significantly prolonged up to 70 times. Next, we performed functional assays of in vitro wound healing, cell invasion, and angiogenesis to evaluate the biological effects of the PCL-derived MSG. Interestingly, we found the ability of this composite system to promote the activation of human keratinocytes, fibroblasts, and endothelial cells, as the main actors of tissue regeneration, confirming what we previously showed for the MSG alone.

19.
Cells ; 8(7)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331117

RESUMEN

We have recently demonstrated that mesoglycan, a fibrinolytic compound, may be a promising pro-healing drug for skin wound repair. We showed that mesoglycan induces migration, invasion, early differentiation, and translocation to the membrane of keratinocytes, as well as the secretion of annexin A1 (ANXA1), further involved in keratinocytes activation. These events are triggered by the syndecan-4 (SDC4)/PKCα pathway. SDC4 also participates to the formation and secretion of microvesicles (EVs) which may contribute to wound healing. EVs were isolated from HaCaT cells, as human immortalized keratinocytes, and then characterised by Western blotting, Field Emission-Scanning Electron Microscopy, and Dynamic Light Scattering. Their autocrine effects were investigated by Wound-Healing/invasion assays and confocal microscopy to analyse cell motility and differentiation, respectively. Here, we found that the mesoglycan increased the release of EVs which amplify its same effects. ANXA1 contained in the microvesicles is able to promote keratinocytes motility and differentiation by acting on Formyl Peptide Receptors (FPRs). Thus, the extracellular form of ANXA1 may be considered as a link to intensify the effects of mesoglycan. In this study, for the first time, we have identified an interesting autocrine loop ANXA1/EVs/FPRs in human keratinocytes, induced by mesoglycan.


Asunto(s)
Anexina A1/fisiología , Vesículas Extracelulares/metabolismo , Glicosaminoglicanos/metabolismo , Queratinocitos/metabolismo , Receptores de Formil Péptido/metabolismo , Piel/metabolismo , Comunicación Autocrina , Diferenciación Celular , Línea Celular , Movimiento Celular , Humanos , Queratinocitos/citología , Piel/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA