Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(7): 5005-5010, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329236

RESUMEN

Radical hydrofunctionalizations of electronically unbiased dienes are challenging to render regioselective, because the products are nearly identical in energy. Here, we report two engineered FMN-dependent "ene"-reductases (EREDs) that catalyze regiodivergent hydroalkylations of cyclic and linear dienes. While previous studies focused exclusively on the stereoselectivity of alkene hydroalkylation, this work highlights that EREDs can control the regioselectivity of hydrogen atom transfer, providing a method for selectively preparing constitutional isomers that would be challenging to prepare using traditional synthetic methods. Engineering the ERED from Gluconabacter sp. (GluER) furnished a variant that favors the γ,δ-unsaturated ketone, while an engineered variant from a commercial ERED panel favors the δ,ε-unsaturated ketone. The effect of beneficial mutations has been investigated using substrate docking studies and the mechanism probed by isotope labeling experiments. A variety of α-bromo ketones can be coupled with cyclic and linear dienes. These interesting building blocks can also be further modified to generate difficult-to-access heterocyclic compounds.


Asunto(s)
Oxidorreductasas , Polienos , Biocatálisis , Oxidorreductasas/química , Catálisis , Isomerismo , Cetonas/química
2.
J Am Chem Soc ; 145(40): 22041-22046, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782882

RESUMEN

Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.


Asunto(s)
Aminas , Diseño de Fármacos , Biocatálisis , Estereoisomerismo
3.
Chembiochem ; 23(15): e202200149, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557486

RESUMEN

The asymmetric reduction of ketones to chiral hydroxyl compounds by alcohol dehydrogenases (ADHs) is an established strategy for the provision of valuable precursors for fine chemicals and pharmaceutics. However, most ADHs favor linear aliphatic and aromatic carbonyl compounds, and suitable biocatalysts with preference for cyclic ketones and diketones are still scarce. Among the few candidates, the alcohol dehydrogenase from Thauera aromatica (ThaADH) stands out with a high activity for the reduction of the cyclic α-diketone 1,2-cyclohexanedione to the corresponding α-hydroxy ketone. This study elucidates catalytic and structural features of the enzyme. ThaADH showed a remarkable thermal and pH stability as well as stability in the presence of polar solvents. A thorough description of the substrate scope combined with the resolution and description of the crystal structure, demonstrated a strong preference of ThaADH for cyclic α-substituted cyclohexanones, and indicated structural determinants responsible for the unique substrate acceptance.


Asunto(s)
Alcohol Deshidrogenasa , Thauera , Alcohol Deshidrogenasa/química , Catálisis , Cetonas/química , Especificidad por Sustrato , Thauera/metabolismo , Zinc
4.
Angew Chem Int Ed Engl ; 57(36): 11584-11588, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30035356

RESUMEN

Amide bond formation is one of the most important reactions in pharmaceutical synthetic chemistry. The development of sustainable methods for amide bond formation, including those that are catalyzed by enzymes, is therefore of significant interest. The ATP-dependent amide bond synthetase (ABS) enzyme McbA, from Marinactinospora thermotolerans, catalyzes the formation of amides as part of the biosynthetic pathway towards the marinacarboline secondary metabolites. The reaction proceeds via an adenylate intermediate, with both adenylation and amidation steps catalyzed within one active site. In this study, McbA was applied to the synthesis of pharmaceutical-type amides from a range of aryl carboxylic acids with partner amines provided at 1-5 molar equivalents. The structure of McbA revealed the structural determinants of aryl acid substrate tolerance and differences in conformation associated with the two half reactions catalyzed. The catalytic performance of McbA, coupled with the structure, suggest that this and other ABS enzymes may be engineered for applications in the sustainable synthesis of pharmaceutically relevant (chiral) amides.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Actinomycetales/metabolismo , Amidas/metabolismo , Proteínas Bacterianas/metabolismo , Carbolinas/metabolismo , Complejos de ATP Sintetasa/química , Actinomycetales/química , Actinomycetales/enzimología , Amidas/química , Proteínas Bacterianas/química , Vías Biosintéticas , Carbolinas/química , Dominio Catalítico , Modelos Moleculares , Metabolismo Secundario , Especificidad por Sustrato
5.
ACS Catal ; 14(2): 1021-1029, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38269041

RESUMEN

The synthesis of amide bonds is one of the most frequently performed reactions in pharmaceutical synthesis, but the requirement for stoichiometric quantities of coupling agents and activated substrates in established methods has prompted interest in biocatalytic alternatives. Amide Bond Synthetases (ABSs) actively catalyze both the ATP-dependent adenylation of carboxylic acid substrates and their subsequent amidation using an amine nucleophile, both within the active site of the enzyme, enabling the use of only a small excess of the amine partner. We have assessed the ability of an ABS from Streptoalloteichus hindustanus (ShABS) to couple a range of carboxylic acid substrates and amines to form amine products. ShABS displayed superior activity to a previously studied ABS, McbA, and a remarkable complementary substrate specificity that included the enantioselective formation of a library of amides from racemic acid and amine coupling partners. The X-ray crystallographic structure of ShABS has permitted mutational mapping of the carboxylic acid and amine binding sites, revealing key roles for L207 and F246 in determining the enantioselectivity of the enzyme with respect to chiral acid and amine substrates. ShABS was applied to the synthesis of pharmaceutical amides, including ilepcimide, lazabemide, trimethobenzamide, and cinepazide, the last with 99% conversion and 95% isolated yield. These findings provide a blueprint for enabling a contemporary pharmaceutical synthesis of one of the most significant classes of small molecule drugs using biocatalysis.

6.
ACS Catal ; 13(3): 1669-1677, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36776386

RESUMEN

Imine reductases (IREDs) catalyze the asymmetric reduction of cyclic imines, but also in some cases the coupling of ketones and amines to form secondary amine products in an enzyme-catalyzed reductive amination (RedAm) reaction. Enzymatic RedAm reactions have typically used small hydrophobic amines, but many interesting pharmaceutical targets require that larger amines be used in these coupling reactions. Following the identification of IR77 from Ensifer adhaerens as a promising biocatalyst for the reductive amination of cyclohexanone with pyrrolidine, we have characterized the ability of this enzyme to catalyze couplings with larger bicyclic amines such as isoindoline and octahydrocyclopenta(c)pyrrole. By comparing the activity of IR77 with reductions using sodium cyanoborohydride in water, it was shown that, while the coupling of cyclohexanone and pyrrolidine involved at least some element of reductive amination, the amination with the larger amines likely occurred ex situ, with the imine recruited from solution for enzyme reduction. The structure of IR77 was determined, and using this as a basis, structure-guided mutagenesis, coupled with point mutations selecting improving amino acid sites suggested by other groups, permitted the identification of a mutant A208N with improved activity for amine product formation. Improvements in conversion were attributed to greater enzyme stability as revealed by X-ray crystallography and nano differential scanning fluorimetry. The mutant IR77-A208N was applied to the preparative scale amination of cyclohexanone at 50 mM concentration, with 1.2 equiv of three larger amines, in isolated yields of up to 93%.

7.
ACS Catal ; 10(8): 4659-4663, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32337091

RESUMEN

The biocatalytic synthesis of amides from carboxylic acids and primary amines in aqueous media can be achieved using the ATP-dependent amide bond synthetase McbA, via an adenylate intermediate, using only 1.5 equiv of the amine nucleophile. Following earlier studies that characterized the broad carboxylic acid specificity of McbA, we now show that, in addition to the natural amine substrate 2-phenylethylamine, a range of simple aliphatic amines, including methylamine, butylamine, and hexylamine, and propargylamine are coupled efficiently to the native carboxylic acid substrate 1-acetyl-9H-ß-carboline-3-carboxylic acid by the enzyme, to give amide products with up to >99% conversion. The structure of wild-type McbA in its amidation conformation, coupled with modeling and mutational studies, reveal an amine access tunnel and a possible role for residue D201 in amine activation. Amide couplings were slower with anilines and alicyclic secondary amines such as pyrrolidine and piperidine. The broader substrate specificity of McbA was exploited in the synthesis of the monoamine oxidase A inhibitor moclobemide, through the reaction of 4-chlorobenzoic acid with 1.5 equiv of 4-(2-aminoethyl)morpholine, and utilizing polyphosphate kinases SmPPK and AjPPK in the presence of polyphosphoric acid and 0.1 equiv of ATP, required for recycling of the cofactor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA