Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34653363

RESUMEN

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Genes Dominantes , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Enfermedades Musculoesqueléticas/genética , Enfermedades del Sistema Nervioso/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Dominio Catalítico , Preescolar , Femenino , Heterocigoto , Hexosiltransferasas/química , Humanos , Masculino , Proteínas de la Membrana/química , Persona de Mediana Edad , Linaje , Homología de Secuencia de Aminoácido
2.
Blood ; 139(12): 1833-1849, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35081253

RESUMEN

Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endolysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise from impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store and ultimately release the essential pore-forming protein perforin and proapoptotic serine proteases, granzymes, into the synapse formed between the CTL and target cell. We discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux through stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biological techniques, we found that the cytotoxic defect arises specifically from impaired perforin pore formation. We demonstrated defects of CTL function of varying severity in patients with NP-C1, with the greatest losses of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-ß-cyclodextrin; however, restoration of autophagy through TFEB overexpression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose patients with NP-C1 to atypical infections and impaired immune surveillance more generally.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedad de Niemann-Pick Tipo C , Colesterol/metabolismo , Granzimas , Humanos , Enfermedad de Niemann-Pick Tipo C/metabolismo , Perforina/genética , Linfocitos T Citotóxicos/metabolismo
3.
Genet Med ; 25(6): 100314, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305855

RESUMEN

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Asunto(s)
Fallo Hepático Agudo , Fallo Hepático , Adolescente , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Acetilcisteína/uso terapéutico , Fallo Hepático/tratamiento farmacológico , Fallo Hepático/genética , Fallo Hepático Agudo/tratamiento farmacológico , Fallo Hepático Agudo/genética , Proteínas Mitocondriales/genética , Mutación , Estudios Retrospectivos , ARNt Metiltransferasas/genética
4.
J Pediatr ; 249: 50-58.e2, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35709957

RESUMEN

OBJECTIVE: To characterize the longitudinal natural history of disease progression in pediatric subjects affected with mucopolysaccharidosis (MPS) IIIB. STUDY DESIGN: Sixty-five children with a confirmed diagnosis of MPS IIIB were enrolled into 1 of 2 natural history studies and followed for up to 4 years. Cognitive and adaptive behavior functions were analyzed in all subjects, and volumetric magnetic resonance imaging analysis of liver, spleen, and brain, as well as levels of heparan sulfate (HS) and heparan sulfate nonreducing ends (HS-NRE), were measured in a subset of subjects. RESULTS: The majority of subjects with MPS IIIB achieved an apex on both cognition and adaptive behavior age equivalent scales between age 3 and 6 years. Development quotients for both cognition and adaptive behavior follow a linear trajectory by which subjects reach a nadir with a score <25 for an age equivalent of 24 months by age 8 years on average and by 13.5 years at the latest. All tested subjects (n = 22) had HS and HS-NRE levels above the normal range in cerebrospinal fluid and plasma, along with signs of hepatomegaly. Subjects lost an average of 26 mL of brain volume (-2.7%) over 48 weeks, owing entirely to a loss of cortical gray matter (32 mL; -6.5%). CONCLUSIONS: MPS IIIB exists along a continuum based on cognitive decline and cortical gray matter atrophy. Although a few individuals with MPS IIIB have an attenuated phenotype, the majority follow predicted trajectories for both cognition and adaptive behavior. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT02493998, NCT03227042, and NCT02754076.


Asunto(s)
Mucopolisacaridosis III , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris , Heparitina Sulfato , Humanos , Imagen por Resonancia Magnética , Mucopolisacaridosis III/diagnóstico
5.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055180

RESUMEN

Pyridine Nucleotide-Disulfide Oxidoreductase Domain 2 (PYROXD2; previously called YueF) is a mitochondrial inner membrane/matrix-residing protein and is reported to regulate mitochondrial function. The clinical importance of PYROXD2 has been unclear, and little is known of the protein's precise biological function. In the present paper, we report biallelic variants in PYROXD2 identified by genome sequencing in a patient with suspected mitochondrial disease. The child presented with acute neurological deterioration, unresponsive episodes, and extreme metabolic acidosis, and received rapid genomic testing. He died shortly after. Magnetic resonance imaging (MRI) brain imaging showed changes resembling Leigh syndrome, one of the more common childhood mitochondrial neurological diseases. Functional studies in patient fibroblasts showed a heightened sensitivity to mitochondrial metabolic stress and increased mitochondrial superoxide levels. Quantitative proteomic analysis demonstrated decreased levels of subunits of the mitochondrial respiratory chain complex I, and both the small and large subunits of the mitochondrial ribosome, suggesting a mitoribosomal defect. Our findings support the critical role of PYROXD2 in human cells, and suggest that the biallelic PYROXD2 variants are associated with mitochondrial dysfunction, and can plausibly explain the child's clinical presentation.


Asunto(s)
Enfermedad de Leigh/diagnóstico por imagen , Mutación Missense , Proteínas Supresoras de Tumor/genética , Resultado Fatal , Humanos , Lactante , Enfermedad de Leigh/genética , Imagen por Resonancia Magnética , Masculino , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Proteómica , Análisis de Secuencia de ARN , Proteínas Supresoras de Tumor/química , Secuenciación Completa del Genoma
6.
Am J Med Genet A ; 185(3): 909-915, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369132

RESUMEN

We describe 10 females with ornithine transcarbamylase (OTC) deficiency and liver dysfunction, revealing a unique pattern of hepatocyte injury in which initial hyperammonemia and coagulopathy is followed by a delayed peak in aminotransferase levels. None of the patients required urgent liver transplantation, though five eventually underwent transplant for recurrent metabolic crises. We intend that this novel observation will initiate further investigations into the pathophysiology of liver dysfunction in OTC-deficient patients, and ultimately lead to the development of therapies and prevent the need for liver transplant.


Asunto(s)
Alanina Transaminasa/sangre , Hepatopatías/etiología , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/complicaciones , Edad de Inicio , Sustitución de Aminoácidos , Aspartato Aminotransferasas/sangre , Biomarcadores , Preescolar , Terapia Combinada , Discapacidades del Desarrollo/genética , Progresión de la Enfermedad , Femenino , Trastornos Hemorrágicos/etiología , Humanos , Hiperamonemia/genética , Lactante , Relación Normalizada Internacional , Hepatopatías/sangre , Hepatopatías/cirugía , Trasplante de Hígado , Mutación Missense , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/sangre , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/dietoterapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/cirugía , Vómitos/genética
7.
Intern Med J ; 50 Suppl 4: 5-27, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33210402

RESUMEN

Lysosomal storage diseases (LSD) comprise a rare and heterogeneous group of nearly 50 heritable metabolic disorders caused by mutations in proteins critical for cellular lysosomal function. Defects in the activity of these proteins in multiple organs leads to progressive intra-lysosomal accumulation of specific substrates, resulting in disruption of cellular functions, extracellular inflammatory responses, tissue damage and organ dysfunction. The classification and clinical presentation of different LSD are dependent on the type of accumulated substrate. Some clinical signs and symptoms are common across multiple LSD, while others are more specific to a particular syndrome. Due to the rarity and wide clinical diversity of LSD, identification and diagnosis can be challenging, and in many cases diagnosis is delayed for months or years. Treatments, such as enzyme replacement therapy, haemopoietic stem cell transplantation and substrate reduction therapy, are now available for some of the LSD. For maximum effect, therapy must be initiated prior to the occurrence of irreversible tissue damage, highlighting the importance of prompt diagnosis. Herein, we discuss the clinical presentation, diagnosis and treatment of four of the treatable LSD: Gaucher disease, Fabry disease, Pompe disease, and two of the mucopolysaccharidoses (I and II). For each disease, we present illustrative case studies to help increase awareness of their clinical presentation and possible treatment outcomes.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Fabry/terapia , Enfermedad de Gaucher/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Enfermedades por Almacenamiento Lisosomal/terapia , Mucopolisacaridosis II/terapia , Mucopolisacaridosis I/terapia , Adulto , Preescolar , Enfermedad de Fabry/diagnóstico , Femenino , Enfermedad de Gaucher/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Trasplante de Células Madre Hematopoyéticas , Humanos , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Masculino , Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis II/diagnóstico
8.
N Engl J Med ; 373(11): 1010-20, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26352813

RESUMEN

BACKGROUND: Lysosomal acid lipase is an essential lipid-metabolizing enzyme that breaks down endocytosed lipid particles and regulates lipid metabolism. We conducted a phase 3 trial of enzyme-replacement therapy in children and adults with lysosomal acid lipase deficiency, an underappreciated cause of cirrhosis and severe dyslipidemia. METHODS: In this multicenter, randomized, double-blind, placebo-controlled study involving 66 patients, we evaluated the safety and effectiveness of enzyme-replacement therapy with sebelipase alfa (administered intravenously at a dose of 1 mg per kilogram of body weight every other week); the placebo-controlled phase of the study was 20 weeks long and was followed by open-label treatment for all patients. The primary end point was normalization of the alanine aminotransferase level. Secondary end points included additional disease-related efficacy assessments, safety, and side-effect profile. RESULTS: Substantial disease burden at baseline included a very high level of low-density lipoprotein cholesterol (≥190 mg per deciliter) in 38 of 66 patients (58%) and cirrhosis in 10 of 32 patients (31%) who underwent biopsy. A total of 65 of the 66 patients who underwent randomization completed the double-blind portion of the trial and continued with open-label treatment. At 20 weeks, the alanine aminotransferase level was normal in 11 of 36 patients (31%) in the sebelipase alfa group and in 2 of 30 (7%) in the placebo group (P=0.03), with mean changes from baseline of -58 U per liter versus -7 U per liter (P<0.001). With respect to prespecified key secondary efficacy end points, we observed improvements in lipid levels and reduction in hepatic fat content (P<0.001 for all comparisons, except P=0.04 for triglycerides). The number of patients with adverse events was similar in the two groups; most events were mild and were considered by the investigator to be unrelated to treatment. CONCLUSIONS: Sebelipase alfa therapy resulted in a reduction in multiple disease-related hepatic and lipid abnormalities in children and adults with lysosomal acid lipase deficiency. (Funded by Synageva BioPharma and others; ARISE ClinicalTrials.gov number, NCT01757184.).


Asunto(s)
Esterol Esterasa/uso terapéutico , Enfermedad de Wolman/tratamiento farmacológico , Adolescente , Adulto , Anciano , Alanina Transaminasa/sangre , Biopsia , Niño , Preescolar , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Método Doble Ciego , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , Femenino , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Persona de Mediana Edad , Esterol Esterasa/efectos adversos , Esterol Esterasa/farmacología , Enfermedad de Wolman/sangre , Adulto Joven , Enfermedad de Wolman
10.
J Biol Chem ; 291(39): 20563-73, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27519416

RESUMEN

Methylmalonic aciduria (MMAuria), caused by deficiency of methylmalonyl-CoA mutase (MUT), usually presents in the newborn period with failure to thrive and metabolic crisis leading to coma or even death. Survivors remain at risk of metabolic decompensations and severe long term complications, notably renal failure and neurological impairment. We generated clinically relevant mouse models of MMAuria using a constitutive Mut knock-in (KI) allele based on the p.Met700Lys patient mutation, used homozygously (KI/KI) or combined with a knockout allele (KO/KI), to study biochemical and clinical MMAuria disease aspects. Transgenic Mut(ki/ki) and Mut(ko/ki) mice survive post-weaning, show failure to thrive, and show increased methylmalonic acid, propionylcarnitine, odd chain fatty acids, and sphingoid bases, a new potential biomarker of MMAuria. Consistent with genetic dosage, Mut(ko/ki) mice have lower Mut activity, are smaller, and show higher metabolite levels than Mut(ki/ki) mice. Further, Mut(ko/ki) mice exhibit manifestations of kidney and brain damage, including increased plasma urea, impaired diuresis, elevated biomarkers, and changes in brain weight. On a high protein diet, mutant mice display disease exacerbation, including elevated blood ammonia, and catastrophic weight loss, which, in Mut(ki/ki) mice, is rescued by hydroxocobalamin treatment. This study expands knowledge of MMAuria, introduces the discovery of new biomarkers, and constitutes the first in vivo proof of principle of cobalamin treatment in mut-type MMAuria.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Dosificación de Gen , Metilmalonil-CoA Mutasa , Fenotipo , Carácter Cuantitativo Heredable , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Amoníaco/metabolismo , Animales , Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/patología , Carnitina/análogos & derivados , Carnitina/sangre , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/farmacología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Riñón/metabolismo , Riñón/patología , Ácido Metilmalónico/sangre , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Ratones , Ratones Noqueados
11.
Am J Hum Genet ; 94(2): 209-22, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24462369

RESUMEN

Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/etnología , Deficiencia de Citocromo-c Oxidasa/genética , Efecto Fundador , Enfermedad de Leigh/etnología , Enfermedad de Leigh/genética , Proteínas Mitocondriales/genética , Cromosomas Humanos Par 19/genética , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Deficiencia de Citocromo-c Oxidasa/complicaciones , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Femenino , Prueba de Complementación Genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Haplotipos , Homocigoto , Humanos , Lactante , Líbano , Enfermedad de Leigh/complicaciones , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Linaje , Polimorfismo de Nucleótido Simple , Proteómica , Análisis de Secuencia de ADN
12.
Cogn Neuropsychol ; 34(6): 347-356, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29210605

RESUMEN

Mucopolysaccharidosis Type II (MPS II) or Hunter Syndrome is a rare X-linked condition, due to a defect in a lysosomal enzyme involved in the breakdown of glycosaminoglycans. It is a progressive condition with worsening over time; however, symptom severity and progression rates vary. Normal intellectual function has been reported in males with mild MPS II but few studies are available that provide comprehensive cognitive profiles. Enzyme replacement therapy (ERT) can stabilize physical symptoms and has become standard treatment. Whether ERT can influence cognition is currently unknown. Considering this, we conducted cognitive, fine motor, and behavioural assessments with three males (7;6-12;1 years) with mild MPS II before and after ERT. Generally, cognition, fine motor skills, and behaviour were in the normal range; however, specific deficits in attention and executive function were identified. Following ERT, some memory improvements were seen. Executive deficits remained, and processing speed declined over time.


Asunto(s)
Atención , Cognición , Función Ejecutiva , Mucopolisacaridosis II/psicología , Niño , Progresión de la Enfermedad , Terapia de Reemplazo Enzimático , Humanos , Iduronato Sulfatasa/metabolismo , Lactante , Masculino , Memoria , Mucopolisacaridosis II/enzimología , Mucopolisacaridosis II/terapia
13.
Hum Mutat ; 37(7): 653-60, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26931382

RESUMEN

Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over 100 genes leading to impaired protein or lipid glycosylation. ALG1 encodes a ß1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date 13 mutations in 18 patients from 14 families have been described with varying degrees of clinical severity. We identified and characterized 39 previously unreported cases of ALG1-CDG from 32 families and add 26 new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2 , was seen in all 27 patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Manosiltransferasas/genética , Mutación , Polisacáridos/metabolismo , Biomarcadores/metabolismo , Trastornos Congénitos de Glicosilación/metabolismo , Femenino , Genes Letales , Glicosilación , Humanos , Masculino , Análisis de Secuencia de ADN , Análisis de Supervivencia
14.
Genet Med ; 18(11): 1090-1096, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26938784

RESUMEN

PURPOSE: To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease. METHODS: Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated. RESULTS: Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies. CONCLUSIONS: This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090-1096.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Patología Molecular , Exoma/genética , Enfermedades Genéticas Congénitas/genética , Humanos , Recién Nacido
15.
Mol Genet Metab ; 115(4): 168-73, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26163321

RESUMEN

3-Hydroxyisobutyryl-CoA hydrolase deficiency (HIBCHD) is a rare inborn error of the valine catabolic pathway associated with Leigh-like disease. We report a female patient who presented at the age of 5months with hypotonia, developmental delay and cerebral atrophy on MRI. Pyruvate dehydrogenase deficiency was initially suspected and decreased activity was shown in fibroblasts. Urine tandem mass spectrometry screening showed large increases in the cysteine conjugate of methacrylate previously described in HIBCHD. 3-hydroxyisobutyryl-CoA hydrolase activity in fibroblasts was below the limit of detection of the enzymatic assay and two novel HIBCH mutations were identified (c.[129dupA];[1033G>A]). Urine metabolite investigations also showed increases in 3-hydroxyisobutyryl carnitine, 2,3-dihydroxy-2-methylbutyrate and several metabolites indicating accumulation and subsequent metabolism of methacrylyl-CoA and acryloyl-CoA. The metabolites derived from acryloyl-CoA were also increased in patients with inborn errors of propionyl-CoA metabolism, indicating the involvement of a secondary propionyl-CoA pathway utilising 3-hydroxyisobutyryl-CoA hydrolase. With the exception of 3-hydroxyisobutyryl carnitine, the metabolite abnormalities were essentially the same as those observed in patients with ECHS1 mutations, a recently described disorder that also affects valine metabolism. Our findings demonstrate the benefits of urine tandem mass spectrometry screening for diagnosing HIBCH and ECHS1 defects and that propionate metabolism may play a role in their pathogenesis. These disorders should be considered during the differential diagnosis of Leigh like-diseases and hypotonia.


Asunto(s)
Anomalías Múltiples/orina , Errores Innatos del Metabolismo de los Aminoácidos/orina , Enoil-CoA Hidratasa/deficiencia , Enoil-CoA Hidratasa/orina , Enfermedad de Leigh/diagnóstico , Tioléster Hidrolasas/deficiencia , Anomalías Múltiples/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Niño , Cisteína/análogos & derivados , Cisteína/orina , Femenino , Fibroblastos/metabolismo , Glutatión/metabolismo , Humanos , Lactante , Enfermedad de Leigh/genética , Tamizaje Masivo , Mutación , Pronóstico , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/orina , Valina/metabolismo
16.
J Inherit Metab Dis ; 38(3): 459-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25511235

RESUMEN

Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase (HMCS2) deficiency results in episodes of hypoglycemia and increases in fatty acid metabolites. Metabolite abnormalities described to date in HMCS2 deficiency are nonspecific and overlap with other inborn errors of metabolism, making the biochemical diagnosis of HMCS2 deficiency difficult. Urinary organic acid profiles from periods of metabolic decompensation were studied in detail in HMCS2-deficient patients from four families. An additional six unrelated patients were identified from clinical presentation and/or qualitative identification of abnormal organic acids. The diagnosis was confirmed by sequencing and deletion/duplication analysis of the HMGCS2 gene. Seven related novel organic acids were identified in urine profiles. Five of them (3,5-dihydroxyhexanoic 1,5 lactone; trans-5-hydroxyhex-2-enoate; 4-hydroxy-6-methyl-2-pyrone; 5-hydroxy-3-ketohexanoate; 3,5-dihydroxyhexanoate) were identified by comparison with synthesized or commercial authentic compounds. We provisionally identified trans-3-hydroxyhex-4-enoate and 3-hydroxy-5-ketohexanoate by their mass spectral characteristics. These metabolites were found in samples taken during periods of decompensation and normalized when patients recovered. When cutoffs of adipic >200 and 4-hydroxy-6-methyl-2-pyrone >20 µmol/mmol creatinine were applied, all eight samples taken from five HMCS2-deficient patients during episodes of decompensation were flagged with a positive predictive value of 80% (95% confidence interval 35-100%). Some ketotic patients had increased 4-hydroxy-6-methyl-2-pyrone. Molecular studies identified a total of 12 novel mutations, including a large deletion of HMGCS2 exon 1 in two families, highlighting the need to perform quantitative gene analyses. There are now 26 known HMGCS2 mutations, which are reviewed in the text. 4-Hydroxy-6-methyl-2-pyrone and related metabolites are markers for HMCS2 deficiency. Detection of these metabolites will streamline the biochemical diagnosis of this disorder.


Asunto(s)
Acilcoenzima A/deficiencia , Acilcoenzima A/genética , Ácidos Grasos/genética , Hipoglucemia/genética , Cetosis/genética , Pironas/orina , Exones , Cromatografía de Gases y Espectrometría de Masas , Humanos , Mutación
17.
Brain ; 137(Pt 11): 2903-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25125611

RESUMEN

Two siblings with fatal Leigh disease had increased excretion of S-(2-carboxypropyl)cysteine and several other metabolites that are features of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, a rare defect in the valine catabolic pathway associated with Leigh-like disease. However, this diagnosis was excluded by HIBCH sequencing and normal enzyme activity. In contrast to HIBCH deficiency, the excretion of 3-hydroxyisobutyryl-carnitine was normal in the children, suggesting deficiency of short-chain enoyl-CoA hydratase (ECHS1 gene). This mitochondrial enzyme is active in several metabolic pathways involving fatty acids and amino acids, including valine, and is immediately upstream of HIBCH in the valine pathway. Both children were compound heterozygous for a c.473C > A (p.A158D) missense mutation and a c.414+3G>C splicing mutation in ECHS1. ECHS1 activity was markedly decreased in cultured fibroblasts from both siblings, ECHS1 protein was undetectable by immunoblot analysis and transfection of patient cells with wild-type ECHS1 rescued ECHS1 activity. The highly reactive metabolites methacrylyl-CoA and acryloyl-CoA accumulate in deficiencies of both ECHS1 and HIBCH and are probably responsible for the brain pathology in both disorders. Deficiency of ECHS1 or HIBCH should be considered in children with Leigh disease. Urine metabolite testing can detect and distinguish between these two disorders.


Asunto(s)
Enoil-CoA Hidratasa/genética , Enfermedad de Leigh/genética , Redes y Vías Metabólicas/genética , Valina/metabolismo , Enoil-CoA Hidratasa/deficiencia , Resultado Fatal , Femenino , Humanos , Lactante , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/metabolismo , Masculino , Mutación/genética , Hermanos , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética
18.
Dev Med Child Neurol ; 56(5): 498-502, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24266778

RESUMEN

Pyridox(am)ine phosphate oxidase (PNPO) deficiency causes severe early infantile epileptic encephalopathy and has been characterized as responding to pyridoxal-5'-phosphate but not to pyridoxine. Two males with PNPO deficiency and novel PNPO mutations are reported and their clinical, metabolic, and video-electroencephalographic (EEG) findings described. The first child showed electro-clinical responses to pyridoxine and deterioration when pyridoxine was withheld. At last review, he has well-controlled epilepsy with pyridoxal-5'-phosphate monotherapy and an autism spectrum disorder. The second child had a perinatal middle cerebral artery infarct and a myoclonic encephalopathy. He failed to respond to pyridoxine but responded well to pyridoxal-5'-phosphate. At the age of 21 months he has global developmental delay and hemiparesis but is seizure-free with pyridoxal-5'-phosphate monotherapy. Plasma and cerebrospinal fluid pyridoxamine levels were increased in both children during treatment with pyridoxine or pyridoxal-5'-phosphate. These observations indicate that differential responses to pyridoxine and pyridoxal-5'-phosphate treatment cannot be relied upon to diagnose PNPO deficiency.


Asunto(s)
Encefalopatías Metabólicas , Hipoxia-Isquemia Encefálica , Fosfato de Piridoxal/uso terapéutico , Piridoxamina/sangre , Piridoxamina/líquido cefalorraquídeo , Piridoxaminafosfato Oxidasa/deficiencia , Convulsiones , Complejo Vitamínico B/uso terapéutico , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/fisiopatología , Niño , Preescolar , Electroencefalografía , Humanos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Piridoxaminafosfato Oxidasa/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/fisiopatología
20.
Biochem Biophys Res Commun ; 427(4): 753-7, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23041189

RESUMEN

There are limited treatment options for the metabolic disorder methylmalonic aciduria. The disorder can be caused by nonsense mutations within the methylmalonyl-CoA mutase gene, resulting in the production of a truncated protein with little or no catalytic activity. We used a genomic reporter assay and mouse primary cell lines which carry a stop-codon mutation in the human methylmalonyl-CoA mutase gene to test the effects of gentamicin and PTC124 for stop-codon read-through potential. Fibroblast cell lines were established from methylmalonic aciduria knockout-stop codon mice. Addition of gentamicin to the culture medium caused a 1.5- to 2-fold increase in mRNA expression of the human methylmalonyl-CoA mutase gene. Without treatment the cells contained 19% of the normal levels of methylmalonyl-CoA mutase enzyme activity which increased to 32% with treatment, suggesting a functional improvement. Treatment with PTC124 increased the amount of human methylmalonyl-CoA mutase gene mRNA by 1.6±0.3-fold and a trend suggesting increased enzyme activity. The genomic reporter assay, BAC_MMA(∗)EGFP, expresses enhanced green fluorescent protein when read-through of the stop codon occurs. Using flow cytometry, RT-real-time PCR and enzyme assay, read-through was measured. Treatment with PTC124 at 20µmol/L resulted in a significant increase in enhanced green fluorescent protein, a 2-fold increase in mRNA expression and a trend to a slight increase in enzyme activity. The clinical relevance of these effects may be tested in mouse models of MMA carrying nonsense mutations in the methylmalonyl-CoA mutase gene. Pharmacological approaches have the advantage of providing a broader effect on multiple tissues, which will benefit many different disorders with similar nonsense mutations.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Codón de Terminación/efectos de los fármacos , Gentamicinas/farmacología , Metilmalonil-CoA Mutasa/genética , Oxadiazoles/farmacología , Animales , Línea Celular , Codón sin Sentido/efectos de los fármacos , Codón sin Sentido/genética , Codón de Terminación/genética , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Metilmalonil-CoA Mutasa/deficiencia , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA