Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Imaging Biol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009951

RESUMEN

INTRODUCTION: Combined radiotherapy and immune checkpoint inhibition is a potential treatment option for head and neck squamous cell carcinoma (HNSCC). Immunocompetent mouse models can help to successfully develop radio- immunotherapy combinations and to increase our understanding of the effects of radiotherapy on the tumor microenvironment for future clinical translation. Therefore, the aim of this study was to develop a homogeneous, reproducible HNSCC model originating from the Mouse Oral Cancer 1 (MOC1) HNSCC cell line, and to explore the radiotherapy-induced changes in its tumor microenvironment, using flow cytometry and PD-L1 microSPECT/CT imaging. MATERIALS AND METHODS: In vivo growing tumors originating from the parental MOC1 line were used to generate single cell derived clones. These clones were screened in vitro for their ability to induce programmed cell death ligand 1 (PD-L1) and major histocompatibility complex class I (MHC-I) following IFNγ exposure. Clones with different IFNγ sensitivity were inoculated in C57BL/6 mice and assessed for tumor outgrowth. The composition of the tumor microenvironment of a stably growing (non)irradiated MOC1-derived clone was assessed by immunohistochemistry, flow cytometry and PD-L1 microSPECT/CT. RESULTS: Low in vitro inducibility of MHC-I and PD-L1 by IFNγ was associated with increased tumor outgrowth of MOC1 clones in vivo. Flow cytometry analysis of cells derived from a stable in vivo growing MOC1 clone MOC1.3D5low showed expression of MHC-I and PD-L1 on several cell populations within the tumor. Upon irradiation, MHC-I and PD-L1 increased on leukocytes (CD45.2+) and cancer associated fibroblasts (CD45.2-/EpCAM-/CD90.1+). Furthermore, PD-L1 microSPECT/CT showed increased tumor uptake of radiolabeled PD-L1 antibodies with a heterogeneous spatial distribution of the radio signal, which co-localized with PD-L1+ and CD45.2+ areas. DISCUSSION: PD-L1 and MHC-I inducibility by IFNγ in vitro is associated with tumor outgrowth of MOC1 clones in vivo. In tumors originating from a stably growing MOC1-derived clone, expression of these immune-related markers was induced by irradiation shown by flow cytometry on several cell populations within the tumor microenvironment such as immune cells and cancer associated fibroblasts. PD-L1 microSPECT/CT showed increased tumor uptake following radiotherapy, and autoradiography showed correlation of uptake with areas that are heavily infiltrated by immune cells. Knowledge of radiotherapy-induced effects on the tumor microenvironment in this model can help optimize timing and dosage for radio- immunotherapy combination strategies in future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA