Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
STAR Protoc ; 2(2): 100579, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34151299

RESUMEN

Lipid droplets are endoplasmic reticulum-derived neutral lipid storage organelles that play critical roles in cellular lipid and energy homeostasis. Here, we present a protocol for the identification of high-confidence lipid droplet proteomes in a cell culture model. This approach overcomes limitations associated with standard biochemical fractionation techniques, employing an engineered ascorbate peroxidase (APEX2) to biotinylate endogenous lipid droplet proteins in living cells for subsequent purification and identification by proteomics. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2018).


Asunto(s)
Gotas Lipídicas/metabolismo , Proteoma , Ascorbato Peroxidasas/metabolismo , Biotina/metabolismo , Células Cultivadas , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Enzimas Multifuncionales/metabolismo
2.
Dev Cell ; 44(1): 97-112.e7, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29275994

RESUMEN

Lipid droplet (LD) functions are regulated by a complement of integral and peripheral proteins that associate with the bounding LD phospholipid monolayer. Defining the composition of the LD proteome has remained a challenge due to the presence of contaminating proteins in LD-enriched buoyant fractions. To overcome this limitation, we developed a proximity labeling strategy that exploits LD-targeted APEX2 to biotinylate LD proteins in living cells. Application of this approach to two different cell types identified the vast majority of previously validated LD proteins, excluded common contaminating proteins, and revealed new LD proteins. Moreover, quantitative analysis of LD proteome dynamics uncovered a role for endoplasmic reticulum-associated degradation in controlling the composition of the LD proteome. These data provide an important resource for future LD studies and demonstrate the utility of proximity labeling to study the regulation of LD proteomes.


Asunto(s)
Biomarcadores/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Gotas Lipídicas/metabolismo , Proteoma/metabolismo , Coloración y Etiquetado/métodos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteoma/análisis , Receptores del Factor Autocrino de Motilidad/metabolismo
3.
Mol Biol Cell ; 28(2): 270-284, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27881664

RESUMEN

The endoplasmic reticulum (ER) mediates the folding, maturation, and deployment of the secretory proteome. Proteins that fail to achieve their native conformation are retained in the ER and targeted for clearance by ER-associated degradation (ERAD), a sophisticated process that mediates the ubiquitin-dependent delivery of substrates to the 26S proteasome for proteolysis. Recent findings indicate that inhibition of long-chain acyl-CoA synthetases with triacsin C, a fatty acid analogue, impairs lipid droplet (LD) biogenesis and ERAD, suggesting a role for LDs in ERAD. However, whether LDs are involved in the ERAD process remains an outstanding question. Using chemical and genetic approaches to disrupt diacylglycerol acyltransferase (DGAT)-dependent LD biogenesis, we provide evidence that LDs are dispensable for ERAD in mammalian cells. Instead, our results suggest that triacsin C causes global alterations in the cellular lipid landscape that disrupt ER proteostasis by interfering with the glycan trimming and dislocation steps of ERAD. Prolonged triacsin C treatment activates both the IRE1 and PERK branches of the unfolded protein response and ultimately leads to IRE1-dependent cell death. These findings identify an intimate relationship between fatty acid metabolism and ER proteostasis that influences cell viability.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gotas Lipídicas/fisiología , Animales , Línea Celular , Diacilglicerol O-Acetiltransferasa , Retículo Endoplásmico/fisiología , Degradación Asociada con el Retículo Endoplásmico/fisiología , Humanos , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteolisis , Triazenos , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Respuesta de Proteína Desplegada/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA