Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Chem Chem Phys ; 24(23): 14150-14158, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35648110

RESUMEN

Overdamped active Brownian motion of self-propelled particles in a liquid has been fairly well studied. However, there are a variety of situations in which the overdamped approximation is not justified, for instance, when self-propelled particles move in a low-viscosity medium or when their rotational diffusivity is enhanced by internal active processes or external control. Examples of various origins include biofilaments driven by molecular motors, living and artificial microflyers and interfacial surfers, field-controlled and superfluid microswimmers, vibration-driven granular particles and autonomous mini-robots with sensorial delays, etc. All of them extend active Brownian motion to the underdamped case, i.e., to active Langevin motion, which takes into account inertia. Despite a rich experimental background, there is a gap in the theory in the field where rotational inertia significantly affects the random walk of active particles on all time scales. In particular, although the well-known models of active Brownian and Ornstein-Uhlenbeck particles include a memory effect of the direction of motion, they are not applicable in the underdamped case, because the rotational inertia, which they do not account for, can partially prevent "memory loss" with increasing rotational diffusion. We describe the two-dimensional motion of a self-propelled particle with both translational and rotational inertia and velocity fluctuations. The proposed generalized analytical equations for the mean kinetic energy, mean-square displacement and noise-averaged trajectory of the self-propelled particle are confirmed by numerical simulations in a wide range of self-propulsion velocities, moments of inertia, rotational diffusivities, medium viscosities and observation times.

2.
Phys Chem Chem Phys ; 23(30): 16248-16257, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34308937

RESUMEN

Self-propelled colloids, active polymers and membranes, driven (vibrated) granular layers and hybrid synthetic-biological systems are striking examples of systems containing synthetic active Brownian particles. Such particles autonomously convert the available energy of the environment into their own directed mechanical motion. In most studies the self-propelled Brownian particles move in overdamped media. Recently, experiments with Janus particles in a low-pressure plasma have appeared. A distinctive feature of such a medium is an extremely low viscosity at which the inertial effects play a significant role, resulting in underdamped Brownian motion. At present, there is a lack of statistical theory describing the underdamped Brownian motion of self-propelled particles at all time scales. This paper presents the numerical simulation results of active Brownian motion in homogeneous media of different viscosities. The calculations are performed using a mathematical model of a self-propelled Brownian sphere with translational and rotational inertia. The time-dependent mean square displacement and mean linear displacement (the noise-averaged trajectory) of the particle are investigated as a function of medium viscosity, self-propulsion velocity and moment of inertia. Our simulation reveals that the dynamics of a self-propelled spherical particle significantly depends on two independent dimensionless parameters of the particle: the ratio of the self-propulsion velocity to the characteristic thermal velocity and the ratio of the friction coefficient to the rotational diffusion coefficient. The obtained statistical characteristics of active Brownian motion are compared with the known theoretical models in a wide range of medium viscosities. We propose simple corrections to the basic theory of overdamped active Brownian motion, which allow one to calculate the effective diffusion coefficient and the persistence length of a self-propelled Brownian particle in a medium with any dynamic viscosity. The results obtained are discussed in relation to active particles in a colloidal plasma and superfluid helium.

3.
J Appl Microbiol ; 116(5): 1129-36, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24517235

RESUMEN

AIM: To study the effects exerted by argon microwave nonthermal plasma (NTP) on cell wall-lacking Mollicutes bacteria. METHODS AND RESULTS: 10(8) CFU ml(-1) agar plated Mycoplasma hominis and Acholeplasma laidlawii were treated with the nonthermal microwave argon plasma for 30-300 s. The maximal 10- and 100-fold drop was observed for A. laidlawii and Myc. hominis, respectively. Similarly treated Escherichia coli and Staphylococcus aureus demonstrated the 10(5) and 10(3) drop, respectively. Removal of cholesterol affected resistance of A. laidlawii. 10 mmol l(-1) antioxidant butylated hydroxytoluene decreased mortality by a factor of 25-200. UV radiation alone caused 25-85% mortality in comparison with the whole NTP. Exogenously added hydrogen peroxide H2O2 did not cause mortality. NTP treatment of Myc. hominis triggered growth of microcolonies, which were several tenfold smaller than a typical colony. CONCLUSIONS: Despite the lack of cell wall, A. laidlawii and Myc. hominis were more resistant to argon microwave NTP than other tested bacteria. Mycoplasma hominis formed microcolonies upon NTP treatment. A role of UV and active species was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: The first study of NTP effects on Mollicutes revealed importance of a membrane composition for bacterial resistance to NTP. New specific Myc. hominis morphological forms were observed. The study confirmed importance of the concerted action of reactive oxygen species (ROS) with UV and other plasma bioactive agents for NTP bactericidal action.


Asunto(s)
Acholeplasma laidlawii/efectos de los fármacos , Antibacterianos/farmacología , Mycoplasma hominis/efectos de los fármacos , Gases em Plasma/farmacología , Argón , Colesterol/fisiología , Viabilidad Microbiana/efectos de los fármacos , Microondas , Mycoplasma hominis/crecimiento & desarrollo , Mycoplasma hominis/ultraestructura , Oxidantes/farmacología , Rayos Ultravioleta
4.
Sci Rep ; 14(1): 13252, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858396

RESUMEN

The paper presents the first experimental observation of an atypical phenomena during self-organization of dust particles into a one-dimensional chain structure levitated vertically in the plasma of a DC glow discharge. Using a laser, the third (middle) dust particle was removed from the chain of five particles so that the positions of the remaining particles did not significantly change, and a vacancy occurred in the place of the removed particle. This state of the chain turned out to be very stable, which is confirmed by the observation of the subsequent exchange of places of the fourth and the fifth particles of the chain upon the action of the laser on the forth particle. After the exchange process, vertical positions of all particles (first, second, fourth and fifth) in the chain remained almost the same as before the exchange, and the vacancy at the position of the third particle was preserved. The experimental data and the video record of the observed phenomena as well as the estimates of the plasma parameters are presented. An assumption has been made about the mechanism of the discovered phenomena that at present discharge conditions both the vacancy formation and the dust particles positions exchange are possible due to a strong ion wakes which are formed behind the upstream dust particles of the chain.

5.
Phys Rev Lett ; 109(5): 055002, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-23006182

RESUMEN

An experimental study of the kinematic viscosity has been carried out for dust particles of size 0.95 and 3.92 µm, in weakly ionized plasma over a wide range of dust coupling parameters. Measurements of viscosity for weakly correlated dusty-plasma systems are presented for the first time. An approximation for the estimation of viscosity constants is proposed. The measured viscosity constants are compared with theoretical estimates and numerical data.


Asunto(s)
Polvo , Modelos Químicos , Gases em Plasma/química , Viscosidad
6.
Artículo en Ruso | MEDLINE | ID: mdl-22937702

RESUMEN

AIM: Study microbicidal activity of low temperature argon plasma (LTP) that is a stream of partially ionized argon having macroscopic temperature of the environment against Chlamydia trachomatis obligate intracellular parasites. Study viability of host cells in parallel. MATERIALS AND METHODS: McCoy line cells infected with C. trachomatis (Bu-434/L2 strain) were exposed to LTP obtained by using atmospheric pressure plasma SHF generator. Intracellular localization of chlamydiae was visualized by luminescent microscopy. RESULTS: Exposure of infected McCoy line cells resulted in the destruction of chlamydia inclusions and practically complete elimination of intracellular bacteria. At the same time LTP exposure did not result in immediate death of host cells, an insignificant reduction of the number of cells was observed 24 hours after the exposure to LTP. CONCLUSION: The effect of LTP for elimination of intracellular chlamydia without significant changes in viability of eukaryotic host cells was demonstrated.


Asunto(s)
Chlamydia trachomatis/crecimiento & desarrollo , Gases em Plasma , Argón/química , Recuento de Células , Línea Celular , Supervivencia Celular , Infecciones por Chlamydia/microbiología , Humanos , Viabilidad Microbiana , Microscopía Fluorescente , Especificidad de la Especie , Temperatura
7.
Phys Rev E ; 106(2-2): 025204, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36110018

RESUMEN

This paper presents a numerical study of the structural parameters of a one-dimensional chain of three dust particles levitating in the near-electrode layer of an rf discharge or in the stratum of a dc discharge. The model considers the motion of dust particles under the action of gravity, external electric field, the Coulomb repulsion, and the electrostatic force from the space charge surrounding the dust particles. Particular attention is paid to the effect of plasma polarization around dust particles and the wake formation under the action of the external electric field. Calculations showed that the charge of the first dust particle in the chain and the total charge of the entire chain, as well as the length of the chain, grow linearly with the external electric field strength. Obtained data are in qualitative agreement with the experimental and numerical data presented in the literature. It was shown that for a certain large value of the external electric field, the charge of the third dust particle is the smallest of all the particles in the chain. It was found that with an increase in the mean value of the external electric field, the chain of dust particles is displaced as a whole in the direction opposite to the action of the electrostatic force on them.

8.
Sci Rep ; 12(1): 614, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022453

RESUMEN

Bacterial motility provides the ability for bacterial dissemination and surface exploration, apart from a choice between surface colonisation and further motion. In this study, we characterised the movement trajectories of pathogenic and probiotic Escherichia coli strains (ATCC43890 and M17, respectively) at the landing stage (i.e., leaving the bulk and approaching the surface) and its correlation with adhesion patterns and efficiency. A poorly motile strain JM109 was used as a control. Using specially designed and manufactured microfluidic chambers, we found that the motion behaviour near surfaces drastically varied between the strains, correlating with adhesion patterns. We consider two bacterial strategies for effective surface colonisation: horizontal and vertical, based on the obtained results. The horizontal strategy demonstrated by the M17 strain is characterised by collective directed movements within the horizontal layer during a relatively long period and non-uniform adhesion patterns, suggesting co-dependence of bacteria in the course of adhesion. The vertical strategy demonstrated by the pathogenic ATCC43890 strain implies the individual movement of bacteria mainly in the vertical direction, a faster transition from bulk to near-surface swimming, and independent bacterial behaviour during adhesion, providing a uniform distribution over the surface.


Asunto(s)
Adhesión Bacteriana , Escherichia coli/fisiología , Movimiento , Escherichia coli/patogenicidad , Probióticos , Especificidad de la Especie , Virulencia
9.
Phys Rev Lett ; 106(20): 205001, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21668236

RESUMEN

Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

10.
Vestn Ross Akad Med Nauk ; (10): 15-21, 2011.
Artículo en Ruso | MEDLINE | ID: mdl-22168034

RESUMEN

Results of application of LTP at atmospheric pressure as an antibacterial agent during the last decade are considered with reference to physicochemical mechanisms of its bactericidal action. The principles of designing modern LTP sources are described in conjunction with the results of LTP application against pathogenic bacteria in vitro and in biofilms. The possibility to destroy biofilm matrix by LTP is estimated along with the results of its testing for the treatment of acute and chronic wound surfaces. Prospects for the development of "plasma medicine" in this country and abroad are discussed with special emphasis on its advantages, such as the absence of long-acting toxic compounds, small probability of spontaneous mutations accounting for resistance to LTP, relatively low cost of LTP sources, independence of LTP effect of the surface relief, painless application.


Asunto(s)
Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/uso terapéutico , Antisepsia , Gases em Plasma , Infección de Heridas , Animales , Antisepsia/instrumentación , Antisepsia/métodos , Biopelículas/efectos de los fármacos , Ensayos Clínicos como Asunto , Recuento de Colonia Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Gases em Plasma/farmacología , Gases em Plasma/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
11.
Sci Rep ; 11(1): 523, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436865

RESUMEN

We present a detailed analysis of experimental study, which shows clear evidence of a two-stage melting process of a quasi-two-dimensional dusty plasma system in a high-frequency gas discharge. We accurately calculated global parameters of the orientational and translational order, as well as their susceptibilities to determine two critical points, related to "solid-to-hexatic" and "hexatic-to-liquid" phase transitions. The nature of the emerging defects and changes in their mutual concentration, in addition to the estimate of core energy of free dislocations also counts in favor of the formation of an intermediate hexatic phase. These results are fully consistent with the Berezinsky-Kosterlitz-Thouless theory.

12.
Phys Rev E ; 103(6-1): 063212, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34271636

RESUMEN

Microparticle suspensions in a polarity-switched discharge plasma of the Plasmakristall-4 facility on board the International Space Station exhibit string-like order. As pointed out in [Phys. Rev. Research 2, 033314 (2020)2643-156410.1103/PhysRevResearch.2.033314], the string-order is subject to evolution on the timescale of minutes at constant gas pressure and constant parameters of polarity switching. We perform a detailed analysis of this evolution using the pair correlations and length spectrum of the string-like clusters (SLCs). Average exponential decay rate of the SLC length spectrum is used as a measure of string order. The analysis shows that the improvement of the string-like order is accompanied by the decrease of the thickness of the microparticle suspension, microparticle number density, and total amount of microparticles in the field of view. This suggests that the observed long-term evolution of the string-like order is caused by the redistribution of the microparticles, which significantly modifies the plasma conditions.

13.
Phys Rev Lett ; 105(4): 045001, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20867851

RESUMEN

Using experiments and combining theory and computer simulations, we show that binary complex plasmas are particularly good model systems to study the kinetics of fluid-fluid demixing at the "atomistic" (individual particle) level. The essential parameters of interparticle interactions in complex plasmas, such as the interaction range(s) and degree of nonadditivity, can be varied significantly, which allows systematic investigations of different demixing regimes. The critical role of competition between long-range and short-range interactions at the initial stage of the spinodal decomposition is discussed.

14.
Sci Rep ; 10(1): 13653, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788600

RESUMEN

There is a variety of cases in nature when the action-reaction symmetry is broken. In particular, suitable conditions for this are realized in colloidal suspensions and complex plasmas. Since the first theories and simulations of the nonreciprocal effective interactions between microparticles in complex plasmas were published in 1995-1996, there have been hundreds of studies in the theoretical development of this theme. However, despite such a rich theoretical background, one of the important unsolved problems is a direct experimental determination of the nonreciprocal interparticle interaction forces. Here, we studied experimentally in detail the forces of the nonreciprocal effective interaction between microparticles suspended a radio-frequency produced plasma sheath. For this purpose, an experimental method based on an analysis of the spectral density of random processes in an open dissipative two-particle system was developed. In contrast to previous investigations, the proposed method takes into account random and dissipative processes in the system, does not require a special design of the experimental setup and any external perturbations, pre-measurements of external fields and any assumptions about the type of interaction. We found that even small charge changes of one particle, caused by its thermal motion in a wake field of another particle, can lead to a significant change in the effective (measurable) interaction between the particles.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 2): 036404, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19392061

RESUMEN

Dust-particles charging in a low-pressure glow discharge was investigated theoretically. The dust-particle charge was found on the basis of a developed self-consistent model taking into account the nonequilibrium character of electron distribution function and the formation of an ionic coat composed of bound or trapped ions around the dust particle. The dust-particle charge, the radial distributions of electron density, free and trapped ions densities, and the distribution of electrostatic potential were found. It was shown that the non-Maxwellian electron distribution function and collisional flux of trapped ions both reduce the dust-particle charge in comparison with that received with the help of the conventional orbital motion limited (OML) model. However, in rare collisional regimes in plasma when the collisional flux is negligible, the formation of ionic coat around a particle leads to a shielding of the proper charge of a dust particle. In low-pressure experiments, it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ions. The calculated effective dust particle charge is in fairly good agreement with the experimental measurements of dust-particle charge dependence on gas pressure.

16.
Phys Rev E ; 100(6-1): 063202, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962420

RESUMEN

The breaking of a plane self-excited dust-acoustic soliton in a dust cloud formed in stratified dc glow discharge plasma is studied. Both macroscopic and kinetic parameters of the dust component near the soliton are experimentally obtained. It is shown that the breaking of a soliton can accelerate charged particles to supersonic speeds. The theoretical interpretation of the experimental results is performed in the framework of the hydrodynamic plasma approach, as well as the single-particle approximation. Both dissipative and nondissipative cases are considered.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(6 Pt 2): 066403, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18643379

RESUMEN

The results of numerical study of mass-transfer processes in quasi-two- and three-dimensional nonideal dissipative systems are presented. Simulations were performed for different types of model pair potentials of intergrain interaction that are various combinations of power-law and exponential functions. The calculations were performed in a wide range of parameters typical for laboratory dusty plasma experiments. It was shown that the dynamics of grains in liquidlike systems for short observation times is close to the evolution of thermal oscillations in the crystal lattice.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(6 Pt 2): 066404, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18643380

RESUMEN

The results of the experimental study of mass-transfer processes are presented for dust systems, forming in a laboratory plasma of a radio-frequency capacitive discharge. The validity of the Langevin and Green-Kubo equations for the description of the dynamics of dusty grains in laboratory plasma is verified. A method for simultaneous determination of dusty plasma parameters, such as the kinetic temperature of the grains, their friction coefficient, and characteristic oscillation frequency, is suggested. The coupling parameter of the system under study and the minimal values of the grain charges are estimated. The parameters of the dusty subsystem obtained (diffusion coefficients, pair correlation functions, charges, and friction coefficients of the grains) are compared with the existing theoretical and numerical data.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 2): 036401, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18517527

RESUMEN

We report finding a self-consistent electric field of electrons, ions, and dust grains inside an ordered dust cloud in glow discharge, and show that this field differs radically from that of an isolated grain. Besides, the screening radius coincides with the size of Wigner-Seitz cell. The value of potential necessary for containing dust particles in the direction perpendicular to the discharge axis is estimated. We show that the interaction potential energy of a system of ordered dust grains has a form characteristic of ionic crystals. Critical parameters for a liquidlike dust structure are estimated. The correlation function of dust grains obtained via this approach is compared with the measured function.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 1): 011107, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18351818

RESUMEN

The problem of diffusion in a time-dependent (and generally inhomogeneous) external field is considered on the basis of a generalized master equation with two times, introduced by Trigger and co-authors [S. A. Trigger, G. J. F. van Heijst, and P. P. J. M. Schram, Physica A 347, 77 (2005); J. Phys.: Conf. Ser. 11, 37 (2005)]. We consider the case of the quasi-Fokker-Planck approximation, when the probability transition function for diffusion (PTD function) does not possess a long tail in coordinate space and can be expanded as a function of instantaneous displacements. The more complicated case of long tails in the PTD will be discussed separately. We also discuss diffusion on the basis of hydrodynamic and kinetic equations and show the validity of the phenomenological approach. A type of "collision" integral is introduced for the description of diffusion in a system of particles, which can transfer from a moving state to the rest state (with some waiting time distribution). The solution of the appropriate kinetic equation in the external field also confirms the phenomenological approach of the generalized master equation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA