Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nano Lett ; 22(17): 6900-6906, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35976289

RESUMEN

Nanoscale inhomogeneity can profoundly impact properties of two-dimensional van der Waals materials. Here, we reveal how sulfur substitution on the selenium atomic sites in Fe1-ySe1-xSx (0 ≤ x ≤ 1, y ≤ 0.1) causes Fe-Ch (Ch = Se, S) bond length differences and strong disorder for 0.4 ≤ x ≤ 0.8. There, the superconducting transition temperature Tc is suppressed and disorder-related scattering is enhanced. The high-temperature metallic resistivity in the presence of strong disorder exceeds the Mott limit and provides an example of the violation of Matthiessen's rule and the Mooij law, a dominant effect when adding moderate disorder past the Drude/Matthiessen's regime in all materials. The scattering mechanism responsible for the resistivity above the Mott limit is unrelated to phonons and arises for strong Se/S atom disorder in the tetrahedral surrounding of Fe. Our findings shed light on the intricate connection between the nanostructural details and the unconventional scattering mechanism, which is possibly related to charge-nematic or magnetic spin fluctuations.

2.
Nat Mater ; 20(9): 1221-1227, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33888904

RESUMEN

The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe0.55Se0.45. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe1+yTe1-xSex. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe0.55Se0.45 is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.

3.
Inorg Chem ; 61(34): 13586-13590, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35972888

RESUMEN

We report on the giant anisotropy found in the thermoelectric power factor (S2σ) of marcasite structure-type PtSb1.4Sn0.6 single crystal. PtSb1.4Sn0.6, synthesized using an ambient pressure flux growth method upon mixing Sb and Sn on the same atomic site, is a new phase different from both PtSb2 and PtSn2, which crystallize in the cubic Pa3̅ pyrite and Fm3̅m fluorite unit cell symmetry, respectively. The large difference in S2σ for heat flow applied along different principal directions of the orthorhombic unit cell stems mostly from anisotropic Seebeck coefficients.

4.
Inorg Chem ; 61(29): 11036-11045, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35830279

RESUMEN

Connections between crystal chemistry and critical temperature Tc have been in the focus of superconductivity, one of the most widely studied phenomena in physics, chemistry, and materials science alike. In most Fe-based superconductors, materials chemistry and physics conspire so that Tc correlates with the average anion height above the Fe plane, i.e., with the geometry of the FeAs4 or FeCh4 (Ch = Te, Se, or S) tetrahedron. By synthesizing Fe1-ySe1-xSx (0 ≤ x ≤ 1; y ≤ 0.1), we find that in alloyed crystals Tc is not correlated with the anion height like it is for most other Fe superconductors. Instead, changes in Tc(x) and tetragonal-to-orthorhombic (nematic) transition Ts(x) upon cooling are correlated with disorder in Fe vibrations in the direction orthogonal to Fe planes, along the crystallographic c-axis. The disorder stems from the random nature of S substitution, causing deformed Fe(Se,S)4 tetrahedra with different Fe-Se and Fe-S bond distances. Our results provide evidence of Tc and Ts suppression by disorder in anion height. The connection to local crystal chemistry may be exploited in computational prediction of new superconducting materials with FeSe/S building blocks.

5.
Nano Lett ; 21(13): 5782-5787, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34170143

RESUMEN

The coupling between charge and spin orderings in strongly correlated systems plays a crucial role in fundamental physics and device applications. As a candidate of multiferroic materials, LuFe2O4 with a nominal Fe2.5+ valence state has the potential for strong charge-spin interactions; however, these interactions have not been fully understood until now. Here, combining complementary characterization methods with theoretical calculations, two types of charge orderings with distinct magnetic properties are revealed. The ground states of LuFe2O4 are decided by the parallel/antiparallel coupling of both charge and spin orderings in the adjacent FeO double layers. Whereas the ferroelectric charge ordering remains ferrimagnetic below 230 K, the antiferroelectric ordering undergoes antiferromagnetic-ferrimagnetic-paramagnetic transitions from 2 K to room temperature. This study demonstrates the unique aspects of strong spin-charge coupling within LuFe2O4. Our results shed light on the coexistence and competing nature of orderings in quantum materials.

6.
Nano Lett ; 20(1): 95-100, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31752490

RESUMEN

Identifying material parameters affecting properties of ferromagnets is key to optimized materials that are better suited for spintronics. Magnetic anisotropy is of particular importance in van der Waals magnets, since it not only influences magnetic and spin transport properties, but also is essential to stabilizing magnetic order in the two-dimensional limit. Here, we report that hole doping effectively modulates the magnetic anisotropy of a van der Waals ferromagnet and explore the physical origin of this effect. Fe3-xGeTe2 nanoflakes show a significant suppression of the magnetic anisotropy with hole doping. Electronic structure measurements and calculations reveal that the chemical potential shift associated with hole doping is responsible for the reduced magnetic anisotropy by decreasing the energy gain from the spin-orbit induced band splitting. Our findings provide an understanding of the intricate connection between electronic structures and magnetic properties in two-dimensional magnets and propose a method to engineer magnetic properties through doping.

7.
Inorg Chem ; 59(22): 16265-16271, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33092339

RESUMEN

We present a detailed investigation of the crystal structure of VI3, a two-dimensional van der Waals material of interest for studies of low-dimensional magnetism. As opposed to the average crystal structure that features R3̅ symmetry of the unit cell, our Raman scattering and X-ray atomic pair distribution function analysis supported by density functional theory calculations point to the coexistence of short-range ordered P3̅1c and long-range ordered R3̅ phases. The highest-intensity peak, A1g3, exhibits a moderate asymmetry that might be traced back to the spin-phonon interactions, as in the case of CrI3.

8.
Nano Lett ; 19(11): 7859-7865, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31661617

RESUMEN

Two-dimensional (2D) van der Waals (vdW) materials show a range of profound physical properties that can be tailored through their incorporation in heterostructures and manipulated with external forces. The recent discovery of long-range ferromagnetic order down to atomic layers provides an additional degree of freedom in engineering 2D materials and their heterostructure devices for spintronics, valleytronics, and magnetic tunnel junction switches. Here, using direct imaging by cryo-Lorentz transmission electron microscopy we show that topologically nontrivial magnetic-spin states, skyrmionic bubbles, can be realized in exfoliated insulating 2D vdW Cr2Ge2Te6. Due to the competition between dipolar interactions and uniaxial magnetic anisotropy, hexagonally packed nanoscale bubble lattices emerge by field cooling with magnetic field applied along the out-of-plane direction. Despite a range of topological spin textures in stripe domains arising due to pair formation and annihilation of Bloch lines, bubble lattices with single chirality are prevalent. Our observation of topologically nontrivial homochiral skyrmionic bubbles in exfoliated vdW materials provides a new avenue for novel quantum states in atomically thin insulators for magneto-electronic and quantum devices.

9.
Phys Rev Lett ; 122(1): 017601, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012699

RESUMEN

The charge density wave (CDW) in ZrTe_{3} is quenched in samples with a small amount of Te isoelectronically substituted by Se. Using angle-resolved photoemission spectroscopy we observe subtle changes in the electronic band dispersions and Fermi surfaces upon Se substitution. The scattering rates are substantially increased, in particular for the large three-dimensional Fermi surface sheet. The quasi-one-dimensional band is unaffected by the substitution and still shows a gap at low temperature, which starts to open from room temperature. Long-range order is, however, absent in the electronic states as in the periodic lattice distortion. The competition between superconductivity and the CDW is thus linked to the suppression of long-range order of the CDW.

10.
Phys Rev Lett ; 123(19): 196604, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31765205

RESUMEN

Strongly correlated kagome magnets are promising candidates for achieving controllable topological devices owing to the rich interplay between inherent Dirac fermions and correlation-driven magnetism. Here we report tunable local magnetism and its intriguing control of topological electronic response near room temperature in the kagome magnet Fe_{3}Sn_{2} using small angle neutron scattering, muon spin rotation, and magnetoresistivity measurement techniques. The average bulk spin direction and magnetic domain texture can be tuned effectively by small magnetic fields. Magnetoresistivity, in response, exhibits a measurable degree of anisotropic weak localization behavior, which allows the direct control of Dirac fermions with strong electron correlations. Our work points to a novel platform for manipulating emergent phenomena in strongly correlated topological materials relevant to future applications.

11.
Inorg Chem ; 58(5): 3107-3114, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30777749

RESUMEN

We report the synthesis and characterization of Fe0.36(4)Pd0.64(4)Se2 with a pyrite-type structure. Fe0.36(4)Pd0.64(4)Se2 was synthesized using ambient pressure flux crystal growth methods even though the space group Pa3 is high-pressure polymorph for both FeSe2 and PdSe2. Combined experimental and theoretical analysis reveal magnetic spin glass state below 23 K in 1000 Oe that stems from random Fe/Pd occupancies on the same atomic site. The frozen-in magnetic randomness contributes significantly to electronic transport. Electronic structure calculations confirm dominant d-electron character of hybridized bands and large density of states near the Fermi level. Flux-grown single crystal alloys in Pd-Fe-Se atomic system therefore open new pathway for exploring different polymorphs in crystal structures and their novel properties.

12.
Proc Natl Acad Sci U S A ; 112(33): 10316-20, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240327

RESUMEN

We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

13.
Proc Natl Acad Sci U S A ; 111(32): 11663-7, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25062692

RESUMEN

To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ek(α,ß) with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism.

14.
J Phys Condens Matter ; 36(38)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38838680

RESUMEN

Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3-4-13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature,Tc, varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero atxc≈0.53-0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just aboveTcshows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure.

15.
J Phys Condens Matter ; 36(22)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335549

RESUMEN

The discovery of long-range magnetic ordering in atomically thin materials catapulted the van der Waals (vdW) family of compounds into an unprecedented popularity, leading to potentially important technological applications in magnetic storage and magneto-transport devices, as well as photoelectric sensors. With the potential for the use of vdW materials in space exploration technologies it is critical to understand how the properties of such materials are affected by ionizing proton irradiation. Owing to their robust intra-layer stability and sensitivity to external perturbations, these materials also provide excellent opportunities for studying proton irradiation as a non-destructive tool for controlling their magnetic properties. Specifically, the exfoliable Cr2Si2Te6(CST) is a ferromagnetic semiconductor with the Curie temperature (TC) of ∼32 K. Here, we have investigated the magnetic properties of CST upon proton irradiation as a function of fluence (1 × 1015, 5 × 1015, 1 × 1016, 5 × 1016, and 1 × 1018H+/cm-2) by employing variable-temperature, variable-field magnetization measurements, and detail how the magnetization, magnetic anisotropy vary as a function of proton fluence across the magnetic phase transition. While theTCremains constant as a function of proton fluence, we observed that the saturation magnetization and magnetic anisotropy diverge at the proton fluence of 5 × 1016H+/cm-2, which is prominent in the ferromagnetic phase, in particular.This work demonstrates that proton irradiation is a feasible method for modifying the magnetic properties and local magnetic interactions of vdWs crystals, which represents a significant step forward in the design of future spintronic and magneto-electronic applications.

16.
ACS Nano ; 18(21): 13458-13467, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739873

RESUMEN

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

17.
Nat Commun ; 15(1): 3971, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729931

RESUMEN

The Berry curvature dipole (BCD) serves as a one of the fundamental contributors to emergence of the nonlinear Hall effect (NLHE). Despite intense interest due to its potential for new technologies reaching beyond the quantum efficiency limit, the interplay between BCD and NLHE has been barely understood yet in the absence of a systematic study on the electronic band structure. Here, we report NLHE realized in NbIrTe4 that persists above room temperature coupled with a sign change in the Hall conductivity at 150 K. First-principles calculations combined with angle-resolved photoemission spectroscopy (ARPES) measurements show that BCD tuned by the partial occupancy of spin-orbit split bands via temperature is responsible for the temperature-dependent NLHE. Our findings highlight the correlation between BCD and the electronic band structure, providing a viable route to create and engineer the non-trivial Hall effect by tuning the geometric properties of quasiparticles in transition-metal chalcogen compounds.

18.
Inorg Chem ; 52(18): 10685-9, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23987520

RESUMEN

We have synthesized a new layered BiS2-based compound, SrFBiS2. This compound has a similar structure to LaOBiS2. It is built up by stacking up SrF layers and NaCl-type BiS2 layers alternatively along the c axis. Electric transport measurement indicates that SrFBiS2 is a semiconductor. Thermal transport measurement shows that SrFBiS2 has a small thermal conductivity and large Seebeck coefficient. First principle calculations are in agreement with experimental results and show that SrFBiS2 is very similar to LaOBiS2, which becomes a superconductor with F doping. Therefore, SrFBiS2 may be a parent compound of new superconductors.

19.
Nano Converg ; 10(1): 59, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133699

RESUMEN

We report a comprehensive study of the nanoscale inhomogeneity and disorder on the thermoelectric properties of FeSe[Formula: see text]S[Formula: see text] ([Formula: see text]) single crystals and the evolution of correlation strength with S substitution. A hump-like feature in temperature-dependent thermpower is enhanced for x = 0.12 and 0.14 in the nematic region with increasing in orbital-selective electronic correlations, which is strongly suppressed across the nematic critical point and for higher S content. Nanoscale Se/S atom disorder in the tetrahedral surroundings of Fe atoms is confirmed by scanning transmission electron microscopy measurements, providing an insight into the nanostructural details and the evolution of correlation strength in FeSe[Formula: see text]S[Formula: see text].

20.
Nat Commun ; 14(1): 2984, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225697

RESUMEN

Visualizing atomic-orbital degrees of freedom is a frontier challenge in scanned microscopy. Some types of orbital order are virtually imperceptible to normal scattering techniques because they do not reduce the overall crystal lattice symmetry. A good example is dxz/dyz (π,π) orbital order in tetragonal lattices. For enhanced detectability, here we consider the quasiparticle scattering interference (QPI) signature of such (π,π) orbital order in both normal and superconducting phases. The theory reveals that sublattice-specific QPI signatures generated by the orbital order should emerge strongly in the superconducting phase. Sublattice-resolved QPI visualization in superconducting CeCoIn5 then reveals two orthogonal QPI patterns at lattice-substitutional impurity atoms. We analyze the energy dependence of these two orthogonal QPI patterns and find the intensity peaked near E = 0, as predicted when such (π,π) orbital order is intertwined with d-wave superconductivity. Sublattice-resolved superconductive QPI techniques thus represent a new approach for study of hidden orbital order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA