Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240166

RESUMEN

Thyroid diseases affect a considerable portion of the population, with hypothyroidism being one of the most commonly reported thyroid diseases. Levothyroxine (T4) is clinically used to treat hypothyroidism and suppress thyroid stimulating hormone secretion in other thyroid diseases. In this work, an attempt to improve T4 solubility is made through the synthesis of ionic liquids (ILs) based on this drug. In this context, [Na][T4] was combined with choline [Ch]+ and 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMiM] + cations in order to prepare the desired T4-ILs. All compounds were characterized by NMR, ATR-FTIR, elemental analysis, and DSC, aiming to check their chemical structure, purities, and thermal properties. The serum, water, and PBS solubilities of the T4-ILs were compared to [Na][T4], as well as the permeability assays. It is important to note an improved adsorption capacity, in which no significant cytotoxicity was observed against L929 cells. [C2OHMiM][T4] seems to be a good alternative to the commercial levothyroxine sodium salt with promising bioavailability.


Asunto(s)
Líquidos Iónicos , Tiroxina , Tiroxina/síntesis química , Tiroxina/farmacocinética , Tiroxina/toxicidad , Disponibilidad Biológica , Solubilidad , Líquidos Iónicos/síntesis química , Líquidos Iónicos/farmacocinética , Líquidos Iónicos/toxicidad , Células L , Animales , Ratones , Permeabilidad
2.
Molecules ; 27(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36014405

RESUMEN

The development of novel pharmaceutical tools to efficiently tackle tuberculosis is the order of the day due to the rapid development of resistant strains of Mycobacterium tuberculosis. Herein, we report novel potential formulations of a repurposed drug, the antimalarial mefloquine (MFL), which was combined with organic anions as chemical adjuvants. Eight mefloquine organic salts were obtained by ion metathesis reaction between mefloquine hydrochloride ([MFLH][Cl]) and several organic acid sodium salts in high yields. One of the salts, mefloquine mesylate ([MFLH][MsO]), presented increased water solubility in comparison with [MFLH][Cl]. Moreover, all salts with the exception of mefloquine docusate ([MFLH][AOT]) showed improved permeability and diffusion through synthetic membranes. Finally, in vitro activity studies against Mycobacterium tuberculosis revealed that these ionic formulations exhibited up to 1.5-times lower MIC values when compared with [MFLH][Cl], particularly mefloquine camphorsulfonates ([MFLH][(1R)-CSA], [MFLH][(1S)-CSA]) and mefloquine HEPES ([MFLH][HEPES]).


Asunto(s)
Antimaláricos , Mycobacterium tuberculosis , Antimaláricos/farmacología , HEPES , Mefloquina/farmacología , Permeabilidad , Sales (Química) , Solubilidad
3.
Mar Drugs ; 19(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671016

RESUMEN

The ever-increasing interest in keeping a young appearance and healthy skin has leveraged the skincare industry. This, coupled together with the increased concern regarding the safety of synthetic products, has boosted the demand for new and safer natural ingredients. Accordingly, the aim of this study was to evaluate the dermatological potential of the brown seaweed Carpomitra costata. The antioxidant, anti-enzymatic, antimicrobial, photoprotective and anti-inflammatory properties of five C. costata fractions (F1-F5) were evaluated. The ethyl acetate fraction (F3) demonstrated the most promising results, with the best ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50 of 140.1 µg/mL) and the capacity to reduce reactive oxygen species (ROS) production promoted by UVA and UVB radiation in 3T3 cells, revealing its antioxidant and photoprotective potential. This fraction also exhibited the highest anti-enzymatic capacity, inhibiting the activities of collagenase, elastase and tyrosinase (IC50 of 7.2, 4.8 and 85.9 µg/mL, respectively). Moreover, F3 showed anti-inflammatory potential, reducing TNF-α and IL-6 release induced by LPS treatment in RAW 264.7 cells. These bioactivities may be related to the presence of phenolic compounds, such as phlorotannins, as demonstrated by NMR analysis. The results highlight the potential of C. costata as a source of bioactive ingredients for further dermatological applications.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Fármacos Dermatológicos/aislamiento & purificación , Phaeophyceae/química , Células 3T3 , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Fármacos Dermatológicos/farmacología , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Concentración 50 Inhibidora , Ratones , Fenoles/aislamiento & purificación , Fenoles/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
4.
Pharmaceutics ; 14(4)2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35456711

RESUMEN

The development of effective antiviral drugs against SARS-CoV-2 is urgently needed and a global health priority. In light of the initial data regarding the repurposing of hydroxychloroquine (HCQ) to tackle this coronavirus, herein we present a quantitative synthesis and spectroscopic and thermal characterization of seven HCQ room temperature ionic liquids (HCQ-ILs) obtained by direct protonation of the base with two equivalents of organic sulfonic, sulfuric and carboxylic acids of different polarities. Two non-toxic and hydrophilic HCQ-ILs, in particular, [HCQH2][C1SO3]2 and [HCQH2][GlcCOO]2, decreased the virus-induced cytopathic effect by two-fold in comparison with the original drug, [HCQH2][SO4]. Despite there being no significant differences in viral RNA production between the three compounds, progeny virus production was significantly affected (p < 0.05) by [HCQH2][GlcCOO]2. Overall, the data suggest that the in vitro antiviral activities of the HCQ-ILs are most likely the result of specific intra- and intermolecular interactions and not so much related with their hydrophilic or lipophilic character. This work paves the way for the development of future novel ionic formulations of hydroxychloroquine with enhanced physicochemical properties.

5.
Antibiotics (Basel) ; 11(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36551498

RESUMEN

Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical ingredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In that sense, this work is focused on the development of novel OSILs-API based on amphotericin B through an innovative procedure and the evaluation of the respective biological activity against Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic cations combined with amphotericin B as anion were synthesized in moderate to high yields and high purities by the water-reduced buffer neutralization method. All prepared compounds were characterized to confirm the desired chemical structure and the specific optical rotation ([α]D25) was also determined. The biological assays performed on L. infantum promastigotes showed increased activity against this parasitic disease when compared with the starting chloride forms and amphotericin B alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound with the highest toxicity. This work reported a simple synthetic method, which can be applied to prepare other organic salts based on molecules containing fragile chemical groups, demonstrating the potential of these OSILs-AmB as possible agents against leishmaniasis.

6.
RSC Adv ; 11(24): 14441-14452, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35423994

RESUMEN

Aspergillus species are the primary cause of invasive aspergillosis, which afflicts hundreds of thousands of patients yearly, with high mortality rates. Amphotericin B is considered the gold standard in antifungal drug therapy, due to its broad-spectrum activity and rarely reported resistance. However, low solubility and permeability, as well as considerable toxicity, challenge its administration. Lipid formulations of amphotericin B have been used to promote its slow release and diminish toxicity, but these are expensive and adverse health effects of their prolonged use have been reported. In the past decades, great interest emerged on converting biologically active molecules into an ionic liquid form to overcome limitations such as low solubility or polymorphisms. In this study, we evaluated the biological activity of novel ionic liquid formulations where the cholinium, cetylpyridinium or trihexyltetradecylphosphonium cations were combined with an anionic form of amphotericin B. We observed that two formulations increased the antifungal activity of the drug, while maintaining its mode of action. Molecular dynamics simulations showed that higher biological activity was due to increased interaction of the ionic liquid with the fungal membrane ergosterol compared with amphotericin B alone. Increased cytotoxicity could also be observed, probably due to greater interaction of the cation with cholesterol, the main sterol in animal cells. Importantly, one formulation also displayed antibacterial activity (dual functionality), likely preserved from the cation. Collectively, the data set ground for the guided development of ionic liquid formulations that could improve the administration, efficacy and safety of antifungal drugs or even the exploitation of their dual functionality.

7.
Pharmaceutics ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717808

RESUMEN

As the development of novel antibiotics has been at a halt for several decades, chemically enhancing existing drugs is a very promising approach to drug development. Herein, we report the preparation of twelve organic salts and ionic liquids (OSILs) from ciprofloxacin and norfloxacin as anions with enhanced antimicrobial activity. Each one of the fluoroquinolones (FQs) was combined with six different organic hydroxide cations in 93-100% yield through a buffer-assisted neutralization methodology. Six of those were isomorphous salts while the remaining six were ionic liquids, with four of them being room temperature ionic liquids. The prepared compounds were not toxic to healthy cell lines and displayed between 47- and 1416-fold more solubility in water at 25 and 37 °C than the original drugs, with the exception of the ones containing the cetylpyridinium cation. In general, the antimicrobial activity against Klebsiella pneumoniae was particularly enhanced for the ciprofloxacin-based OSILs, with up to ca. 20-fold decreases of the inhibitory concentrations in relation to the parent drug, while activity against Staphylococcus aureus and the commensal Bacillus subtilis strain was often reduced. Depending on the cation-drug combination, broad-spectrum or strain-specific antibiotic salts were achieved, potentially leading to the future development of highly bioavailable and safe antimicrobial ionic formulations.

8.
Pharmaceutics ; 12(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131540

RESUMEN

The preparation and characterization of ionic liquids and organic salts (OSILs) that contain anionic penicillin G [secoPen] and amoxicillin [seco-Amx] hydrolysate derivatives and their in vitro antibacterial activity against sensitive and resistant Escherichia coli and Staphylococcus aureus strains is reported. Eleven hydrolyzed ß-lactam-OSILs were obtained after precipitation in moderate-to-high yields via the neutralization of the basic ammonia buffer of antibiotics with different cation hydroxide salts. The obtained minimum inhibitory concentration (MIC) data of the prepared compounds showed a relative decrease of the inhibitory concentrations (RDIC) in the order of 100 in the case of [C2OHMIM][seco-Pen] against sensitive S. aureus ATCC25923 and, most strikingly, higher than 1000 with [C16Pyr][seco-Amx] against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. These outstanding in vitro results showcase that a straightforward transformation of standard antibiotics into hydrolyzed organic salts can dramatically change the pharmaceutical activity of a drug, including giving rise to potent formulations of antibiotics against deadly bacteria strains.

9.
Antioxidants (Basel) ; 9(7)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664603

RESUMEN

Skin aging is a biological process influenced by intrinsic and extrinsic factors. The last ones, mainly exposure to UV radiation, increases reactive oxygen species (ROS) production leading to a loss of extracellular matrix, also enhanced by enzymatic degradation of matrix supporting molecules. Thus, and with the growing demand for eco-friendly skin products, natural compounds extracted from brown seaweeds revealed to be good candidates due to their broad range of bioactivities, especially as antioxidants. The aim of this study was to assess the dermo-cosmetic potential of different fractions obtained from the brown seaweed Fucus spiralis. For this purpose, in vitro antioxidant (Total Phenolic Content (TPC), 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, Ferric Reducing Antioxidant Power (FRAP), Oxygen Radical Absorbance Capacity (ORAC)), anti-enzymatic (collagenase, elastase and hyaluronidase), antimicrobial, anti-inflammatory (NO production) and photoprotective (ROS production) capacities were evaluated. Although nearly all fractions evidenced antioxidant effects, fraction F10 demonstrated the highest antioxidant ability (EC50 of 38.5 µg/mL, DPPH assay), and exhibited a strong effect as an inhibitor of collagenase (0.037 µg/mL) and elastase (3.0 µg/mL). Moreover, this fraction was also the most potent on reducing ROS production promoted by H2O2 (IC50 of 41.3 µg/mL) and by UVB (IC50 of 31.3 µg/mL). These bioactivities can be attributed to its high content of phlorotannins, as evaluated by LC-MS analysis, reinforcing the potential of F. spiralis for further dermatological applications.

10.
J Phys Chem B ; 112(29): 8645-50, 2008 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-18590308

RESUMEN

The aggregation behavior in aqueous solution of a number of ionic liquids was investigated at ambient conditions by using three techniques: fluorescence, interfacial tension, and (1)H NMR spectroscopy. For the first time, the fluorescence quenching effect has been used for the determination of critical micelle concentrations. This study focuses on the following ionic liquids: [Cnmpy]Cl (1-alkyl-3-methylpyridinium chlorides) with different linear alkyl chain lengths (n=4, 10, 12, 14, 16, or 18), [C12mpip]Br (1-dodecyl-1-methylpiperidinium bromide), [C12mpy]Br (1-dodecyl-3-methylpyridinium bromide), and [C12mpyrr]Br (1-dodecyl-1-methylpyrrolidinium bromide). Both the influence of the alkyl side-chain length and the type of ring in the cation (head) on the CMC were investigated. A comparison of the self-aggregation behavior of ionic liquids based on 1-alkyl-3-methylpyridinium and 1-alkyl-3-methylpyridinium cations is provided. It was observed that 1-alkyl-3-methylpyridinium ionic liquids could be used as quenchers for some fluorescence probes (fluorophores). As a consequence, a simple and convenient method to probe early evidence of aggregate formation was established.

11.
ChemMedChem ; 10(9): 1480-3, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26190053

RESUMEN

Significant antiproliferative effects against various tumor cell lines were observed with novel ampicillin salts as ionic liquids. The combination of anionic ampicillin with appropriate ammonium, imidazolium, phosphonium, and pyridinium cations yielded active pharmaceutical ingredient ionic liquids (API-ILs) that show potent antiproliferative activities against five different human cancer cell lines: T47D (breast), PC3 (prostate), HepG2 (liver), MG63 (osteosarcoma), and RKO (colon). Some API-ILs showed IC50 values between 5 and 42 nM, activities that stand in dramatic contrast to the negligible cytotoxic activity level shown by the ampicillin sodium salt. Moreover, very low cytotoxicity against two primary cell lines-skin (SF) and gingival fibroblasts (GF)-indicates that the majority of these API-ILs are nontoxic to normal human cell lines. The most promising combination of antitumor activity and low toxicity toward healthy cells was observed for the 1-hydroxyethyl-3-methylimidazolium-ampicillin pair ([C2 OHMIM][Amp]), making this the most suitable lead API-IL for future studies.


Asunto(s)
Ampicilina/química , Antineoplásicos/química , Antineoplásicos/farmacología , Líquidos Iónicos/química , Líquidos Iónicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Células Hep G2/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Relación Estructura-Actividad
12.
Int J Pharm ; 456(2): 553-9, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-23978632

RESUMEN

In order to overcome the problems associated with low water solubility, and consequently low bioavailability of active pharmaceutical ingredients (APIs), herein we explore a modular ionic liquid synthetic strategy for improved APIs. Ionic liquids containing L-ampicillin as active pharmaceutical ingredient anion were prepared using the methodology developed in our previous work, using organic cations selected from substituted ammonium, phosphonium, pyridinium and methylimidazolium salts, with the intent of enhancing the solubility and bioavailability of L-ampicillin forms. In order to evaluate important properties of the synthesized API-ILs, the water solubility at 25 °C and 37 °C (body temperature) as well as octanol-water partition coefficients (Kow's) and HDPC micelles partition at 25 °C were measured. Critical micelle concentrations (CMC's) in water at 25 °C and 37 °C of the pharmaceutical ionic liquids bearing cations with surfactant properties were also determined from ionic conductivity measurements.


Asunto(s)
Ampicilina/química , Ampicilina/farmacocinética , Líquidos Iónicos/química , Líquidos Iónicos/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Micelas , Solubilidad
13.
ChemMedChem ; 6(6): 975-85, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21557480

RESUMEN

Ionic liquids (ILs) are ionic compounds that possess a melting temperature below 100 °C. Their physical and chemical properties are attractive for various applications. Several organic materials that are now classified as ionic liquids were described as far back as the mid-19th century. The search for new and different ILs has led to the progressive development and application of three generations of ILs: 1) The focus of the first generation was mainly on their unique intrinsic physical and chemical properties, such as density, viscosity, conductivity, solubility, and high thermal and chemical stability. 2) The second generation of ILs offered the potential to tune some of these physical and chemical properties, allowing the formation of "task-specific ionic liquids" which can have application as lubricants, energetic materials (in the case of selective separation and extraction processes), and as more environmentally friendly (greener) reaction solvents, among others. 3) The third and most recent generation of ILs involve active pharmaceutical ingredients (API), which are being used to produce ILs with biological activity. Herein we summarize recent developments in the area of third-generation ionic liquids that are being used as APIs, with a particular focus on efforts to overcome current hurdles encountered by APIs. We also offer some innovative solutions in new medical treatment and delivery options.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Líquidos Iónicos/química , Líquidos Iónicos/farmacología , Animales , Antiinfecciosos/uso terapéutico , Antineoplásicos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Líquidos Iónicos/uso terapéutico , Micosis/tratamiento farmacológico , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA