Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Ecol ; 85(4): 892-902, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26990178

RESUMEN

Deciphering the causes of variation in reproductive success is a fundamental issue in ecology, as the number of offspring produced is an important driver of individual fitness and population dynamics. Little is known, however, about how different factors interact to drive variation in reproduction, such as whether an individual's response to extrinsic conditions (e.g. food availability or predation) varies according to its intrinsic attributes (e.g. age, previous allocation of resources towards reproduction). We used 29 years of reproductive data from marked female tawny owls and natural variation in food availability (field vole) and predator abundance (northern goshawk) to quantify the extent to which extrinsic and intrinsic factors interact to influence owl reproductive traits (breeding propensity, clutch size and nest abandonment). Extrinsic and intrinsic factors appeared to interact to affect breeding propensity (which accounted for 83% of the variation in owl reproductive success). Breeding propensity increased with vole density, although increasing goshawk abundance reduced the strength of this relationship. Owls became slightly more likely to breed as they aged, although this was only apparent for individuals who had fledged chicks the year before. Owls laid larger clutches when food was more abundant. When owls were breeding in territories less exposed to goshawk predation, 99·5% of all breeding attempts reached the fledging stage. In contrast, the probability of breeding attempts reaching the fledging stage in territories more exposed to goshawk predation depended on the amount of resources an owl had already allocated towards reproduction (averaging 87·7% for owls with clutches of 1-2 eggs compared to 97·5% for owls with clutches of 4-6 eggs). Overall, our results suggested that changes in extrinsic conditions (predominantly food availability, but also predator abundance) had the greatest influence on owl reproduction. In response to deteriorating extrinsic conditions (fewer voles and more goshawks), owls appeared to breed more frequently, but allocated fewer resources per breeding attempt. However, intrinsic attributes also appeared to have a relatively small influence on how an individual responded to variation in extrinsic conditions, which indicates that owl reproductive decisions were shaped by a complex series of extrinsic and intrinsic trade-offs.


Asunto(s)
Tamaño de la Nidada/fisiología , Conducta Predatoria , Reproducción/fisiología , Estrigiformes/fisiología , Factores de Edad , Animales , Arvicolinae , Ecosistema , Falconiformes , Femenino , Comportamiento de Nidificación , Dinámica Poblacional
2.
J Anim Ecol ; 84(3): 692-701, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25334013

RESUMEN

Currently, there is no general agreement about the extent to which predators impact prey population dynamics and it is often poorly predicted by predation rates and species abundances. This could, in part be caused by variation in the type of selective predation occurring. Notably, if predation is selective on categories of individuals that contribute little to future generations, it may moderate the impact of predation on prey population dynamics. However, despite its prevalence, selective predation has seldom been studied in this context. Using recoveries of ringed tawny owls (Strix aluco) predated by 'superpredators', northern goshawks (Accipiter gentilis) as they colonized the area, we investigated the extent to which predation was sex and age-selective. Predation of juvenile owls was disproportionately high. Amongst adults, predation was strongly biased towards females and predation risk appeared to increase with age. This implies age-selective predation may shape the decline in survival with age, observed in tawny owls. To determine whether selective predation can modulate the overall impact of predation, age-based population matrix models were used to simulate the impact of five different patterns of age-selective predation, including the pattern actually observed in the study site. The overall impact on owl population size varied by up to 50%, depending on the pattern of selective predation. The simulation of the observed pattern of predation had a relatively small impact on population size, close to the least harmful scenario, predation on juveniles only. The actual changes in owl population size and structure observed during goshawk colonization were also analysed. Owl population size and immigration were unrelated to goshawk abundance. However, goshawk abundance appeared to interact with owl food availability to have a delayed effect on recruitment into the population. This study provides strong evidence to suggest that predation of other predators is both age and sex-selective and that selective predation of individuals with a low reproductive value may mitigate the overall impact of predators on prey population dynamics. Consequently, our results highlight how accounting for the type of selective predation occurring is likely to improve future predictions of the overall impact of predation.


Asunto(s)
Halcones/fisiología , Conducta Predatoria , Estrigiformes/fisiología , Factores de Edad , Animales , Inglaterra , Femenino , Cadena Alimentaria , Masculino , Modelos Biológicos , Dinámica Poblacional , Factores Sexuales
3.
Glob Chang Biol ; 20(6): 1770-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24634279

RESUMEN

Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe.


Asunto(s)
Arvicolinae/fisiología , Cambio Climático , Cadena Alimentaria , Modelos Biológicos , Estrigiformes/fisiología , Animales , Inglaterra , Femenino , Masculino , Dinámica Poblacional , Estaciones del Año
4.
J Anim Ecol ; 80(5): 968-75, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21466554

RESUMEN

1. Natal conditions and senescence are two major factors shaping life-history traits of wild animals. However, such factors have rarely been investigated together, and it remains largely unknown whether they interact to affect age-specific performance. 2. We used 27 years of longitudinal data collected on tawny owls with estimates of prey density (field voles) from Kielder Forest (UK) to investigate how prey density at birth affects ageing patterns in reproduction and survival. 3. Natal conditions experienced by tawny owls, measured in terms of vole density, dramatically varied among cohorts and explained 87% of the deviance in first-year apparent survival (annual estimates ranging from 0·07 to 0·33). 4. We found evidence for senescence in survival for females as well as for males. Model-averaged estimates showed that adult survival probability declined linearly with age for females from age 1. In contrast, male survival probability, lower on average than for female, declined after a plateau at age 1-3. 5. We also found evidence for reproductive senescence (number of offspring). For females, reproductive performance increased until age 9 then declined. Males showed an earlier decline in reproductive performance with an onset of senescence at age 3. 6. Long-lasting effects of natal environmental conditions were sex specific. Female reproductive performance was substantially related to natal conditions (difference of 0·24 fledgling per breeding event between females born in the first or third quartile of vole density), whereas male performance was not. We found no evidence for tawny owls born in years with low prey density having accelerated rates of senescence. 7. Our results, combined with previous findings, suggest the way natal environmental conditions affect senescence varies not only across species but also within species according to gender and the demographic trait considered.


Asunto(s)
Envejecimiento , Cadena Alimentaria , Reproducción , Estrigiformes/fisiología , Factores de Edad , Animales , Arvicolinae , Ambiente , Femenino , Estudios Longitudinales , Masculino , Densidad de Población , Factores Sexuales , Análisis de Supervivencia
5.
Am Nat ; 167(4): 583-90, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16671000

RESUMEN

We demonstrate changes over time in the spatial and temporal dynamics of an herbivorous small rodent by analyzing time series of population densities obtained at 21 locations on clear cuts within a coniferous forest in Britain from 1984 to 2004. Changes had taken place in the amplitude, periodicity, and synchrony of cycles and density-dependent feedback on population growth rates. Evidence for the presence of a unidirectional traveling wave in rodent abundance was strong near the beginning of the study but had disappeared near the end. This study provides empirical support for the hypothesis that the temporal (such as delayed density dependence structure) and spatial (such as traveling waves) dynamics of cyclic populations are closely linked. The changes in dynamics were markedly season specific, and changes in overwintering dynamics were most pronounced. Climatic changes, resulting in a less seasonal environment with shorter winters near the end of the study, are likely to have caused the changes in vole dynamics. Similar changes in rodent dynamics and the climate as reported from Fennoscandia indicate the involvement of large-scale climatic variables.


Asunto(s)
Arvicolinae/fisiología , Periodicidad , Conducta Espacial , Animales , Clima , Densidad de Población , Dinámica Poblacional , Estaciones del Año , Factores de Tiempo
6.
Science ; 340(6128): 63-6, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23559246

RESUMEN

Suggestions of collapse in small herbivore cycles since the 1980s have raised concerns about the loss of essential ecosystem functions. Whether such phenomena are general and result from extrinsic environmental changes or from intrinsic process stochasticity is currently unknown. Using a large compilation of time series of vole abundances, we demonstrate consistent cycle amplitude dampening associated with a reduction in winter population growth, although regulatory processes responsible for cyclicity have not been lost. The underlying syndrome of change throughout Europe and grass-eating vole species suggests a common climatic driver. Increasing intervals of low-amplitude small herbivore population fluctuations are expected in the future, and these may have cascading impacts on trophic webs across ecosystems.


Asunto(s)
Arvicolinae/fisiología , Herbivoria/fisiología , Poaceae , Animales , Europa (Continente) , Dinámica Poblacional , Estaciones del Año , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA