Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Gastroenterology ; 161(1): 287-300.e16, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33771553

RESUMEN

BACKGROUND & AIMS: The etiology of cholestasis remains unknown in many children. We surveyed the genome of children with chronic cholestasis for variants in genes not previously associated with liver disease and validated their biological relevance in zebrafish and murine models. METHOD: Whole-exome (n = 4) and candidate gene sequencing (n = 89) was completed on 93 children with cholestasis and normal serum γ-glutamyl transferase (GGT) levels without pathogenic variants in genes known to cause low GGT cholestasis such as ABCB11 or ATP8B1. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing was used to induce frameshift pathogenic variants in the candidate gene in zebrafish and mice. RESULTS: In a 1-year-old female patient with normal GGT cholestasis and bile duct paucity, we identified a homozygous truncating pathogenic variant (c.198delA, p.Gly67Alafs∗6) in the ABCC12 gene (NM_033226). Five additional rare ABCC12 variants, including a pathogenic one, were detected in our cohort. ABCC12 encodes multidrug resistance-associated protein 9 (MRP9) that belongs to the adenosine 5'-triphosphate-binding cassette transporter C family with unknown function and no previous implication in liver disease. Immunohistochemistry and Western blotting revealed conserved MRP9 protein expression in the bile ducts in human, mouse, and zebrafish. Zebrafish abcc12-null mutants were prone to cholangiocyte apoptosis, which caused progressive bile duct loss during the juvenile stage. MRP9-deficient mice had fewer well-formed interlobular bile ducts and higher serum alkaline phosphatase levels compared with wild-type mice. They exhibited aggravated cholangiocyte apoptosis, hyperbilirubinemia, and liver fibrosis upon cholic acid challenge. CONCLUSIONS: Our work connects MRP9 with bile duct homeostasis and cholestatic liver disease for the first time. It identifies a potential therapeutic target to attenuate bile acid-induced cholangiocyte injury.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Conductos Biliares Intrahepáticos/patología , Colestasis Intrahepática/genética , Colestasis Intrahepática/patología , Mutación , Proteínas de Pez Cebra/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis , Conductos Biliares Intrahepáticos/metabolismo , Estudios de Casos y Controles , Colestasis Intrahepática/metabolismo , Enfermedad Crónica , Femenino , Edición Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Ratones , Ratones Endogámicos C57BL , Fenotipo , Secuenciación del Exoma , Pez Cebra , Proteínas de Pez Cebra/metabolismo
2.
J Chem Inf Model ; 60(12): 5771-5780, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-32530282

RESUMEN

The novel coronavirus (SARS-CoV-2) has infected several million people and caused thousands of deaths worldwide since December 2019. As the disease is spreading rapidly all over the world, it is urgent to find effective drugs to treat the virus. The main protease (Mpro) of SARS-CoV-2 is one of the potential drug targets. Therefore, in this context, we used rigorous computational methods, including molecular docking, fast pulling of ligand (FPL), and free energy perturbation (FEP), to investigate potential inhibitors of SARS-CoV-2 Mpro. We first tested our approach with three reported inhibitors of SARS-CoV-2 Mpro, and our computational results are in good agreement with the respective experimental data. Subsequently, we applied our approach on a database of ∼4600 natural compounds, as well as 8 available HIV-1 protease (PR) inhibitors and an aza-peptide epoxide. Molecular docking resulted in a short list of 35 natural compounds, which was subsequently refined using the FPL scheme. FPL simulations resulted in five potential inhibitors, including three natural compounds and two available HIV-1 PR inhibitors. Finally, FEP, the most accurate and precise method, was used to determine the absolute binding free energy of these five compounds. FEP results indicate that two natural compounds, cannabisin A and isoacteoside, and an HIV-1 PR inhibitor, darunavir, exhibit a large binding free energy to SARS-CoV-2 Mpro, which is larger than that of 13b, the most reliable SARS-CoV-2 Mpro inhibitor recently reported. The binding free energy largely arises from van der Waals interaction. We also found that Glu166 forms H-bonds to all of the inhibitors. Replacing Glu166 by an alanine residue leads to ∼2.0 kcal/mol decreases in the affinity of darunavir to SARS-CoV-2 Mpro. Our results could contribute to the development of potential drugs inhibiting SARS-CoV-2.


Asunto(s)
Antivirales/química , Tratamiento Farmacológico de COVID-19 , Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/metabolismo , SARS-CoV-2/efectos de los fármacos , Secuencia de Aminoácidos , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , Productos Biológicos/química , Productos Biológicos/farmacología , Darunavir/química , Darunavir/farmacología , Bases de Datos Factuales , Diseño de Fármacos , Glucósidos/química , Glucósidos/farmacología , Inhibidores de la Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptidos/química , Fenoles/química , Fenoles/farmacología , Unión Proteica , Relación Estructura-Actividad , Termodinámica
3.
Int J Mol Sci ; 18(2)2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28208716

RESUMEN

Drug-induced liver injury (DILI) is the most common reason for failures during the drug development process and for safety-related withdrawal of drugs from the pharmaceutical market. Therefore, having tools and techniques that can detect hepatotoxic properties in drug candidates at an early discovery stage is highly desirable. In this study, cell imaging counting was used to measure in a fast, straightforward, and unbiased way the effect of paracetamol and tetracycline, (compounds known to cause hepatotoxicity in humans) on the amount of DsRed-labeled hepatocytes recovered by protease digestion from Tg(fabp10a:DsRed) transgenic zebrafish. The outcome was in general comparable with the results obtained using two reference methods, i.e., visual analysis of liver morphology by fluorescence microscopy and size analysis of fluorescent 2D liver images. In addition, our study shows that administering compounds into the yolk is relevant in the framework of hepatotoxicity testing. Taken together, cell imaging counting provides a novel and rapid tool for screening hepatotoxicants in early stages of drug development. This method is also suitable for testing of other organ-related toxicities subject to the organs and tissues expressing fluorescent proteins in transgenic zebrafish lines.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Larva , Imagen Molecular , Pez Cebra , Animales , Animales Modificados Genéticamente , Biopsia , Recuento de Células , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Expresión Génica , Genes Reporteros , Hepatocitos/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Microscopía Fluorescente/métodos , Imagen Molecular/métodos
4.
Proc Natl Acad Sci U S A ; 110(50): 20194-9, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24282294

RESUMEN

MicroRNA-155 (miR-155) regulates antibody responses and subsequent B-cell effector functions to exogenous antigens. However, the role of miR-155 in systemic autoimmunity is not known. Using the death receptor deficient (Fas(lpr)) lupus-prone mouse, we show here that ablation of miR-155 reduced autoantibody responses accompanied by a decrease in serum IgG but not IgM anti-dsDNA antibodies and a reduction of kidney inflammation. MiR-155 deletion in Fas(lpr) B cells restored the reduced SH2 domain-containing inositol 5'-phosphatase 1 to normal levels. In addition, coaggregation of the Fc γ receptor IIB with the B-cell receptor in miR-155(-/-)-Fas(lpr) B cells resulted in decreased ERK activation, proliferation, and production of switched antibodies compared with miR-155 sufficient Fas(lpr) B cells. Thus, by controlling the levels of SH2 domain-containing inositol 5'-phosphatase 1, miR-155 in part maintains an activation threshold that allows B cells to respond to antigens.


Asunto(s)
Autoanticuerpos/inmunología , Lupus Eritematoso Sistémico/prevención & control , MicroARNs/genética , MicroARNs/inmunología , Animales , Autoanticuerpos/biosíntesis , Northern Blotting , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Técnicas Histológicas , Inmunohistoquímica , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Noqueados , Urinálisis
5.
Toxicol Appl Pharmacol ; 280(2): 345-51, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25134866

RESUMEN

BACKGROUND: Wilson disease (WD) is caused by accumulation of excess copper (Cu) due to a mutation in the gene encoding the liver Cu transporter ATP7B, and is characterized by acute liver failure or cirrhosis and neuronal cell death. We investigated the effect of OSIP108, a plant derived decapeptide that prevents Cu-induced apoptosis in yeast and human cells, on Cu-induced toxicity in various mammalian in vitro models relevant for WD and in a Cu-toxicity zebrafish larvae model applicable to WD. METHODS: The effect of OSIP108 was evaluated on viability of various cell lines in the presence of excess Cu, on liver morphology of a Cu-treated zebrafish larvae strain that expresses a fluorescent reporter in hepatocytes, and on oxidative stress levels in wild type AB zebrafish larvae. RESULTS: OSIP108 increased not only viability of Cu-treated CHO cells transgenically expressing ATP7B and the common WD-causing mutant ATP7B(H1069Q), but also viability of Cu-treated human glioblastoma U87 cells. Aberrancies in liver morphology of Cu-treated zebrafish larvae were observed, which were further confirmed as Cu-induced hepatotoxicity by liver histology. Injections of OSIP108 into Cu-treated zebrafish larvae significantly increased the amount of larvae with normal liver morphology and decreased Cu-induced production of reactive oxygen species. CONCLUSIONS: OSIP108 prevents Cu-induced toxicity in in vitro models and in a Cu-toxicity zebrafish larvae model applicable to WD. GENERAL SIGNIFICANCE: All the above data indicate the potential of OSIP108 as a drug lead for further development as a novel WD treatment.


Asunto(s)
Proteínas de Arabidopsis/farmacología , Cobre/toxicidad , Degeneración Hepatolenticular/tratamiento farmacológico , Oligopéptidos/farmacología , Adenosina Trifosfatasas/genética , Animales , Células CHO , Proteínas de Transporte de Catión/genética , Línea Celular Tumoral , ATPasas Transportadoras de Cobre , Cricetulus , Glioblastoma , Humanos , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pez Cebra
6.
J Nat Prod ; 76(6): 1064-70, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23806111

RESUMEN

Chemicals targeting the liver stage (LS) of the malaria parasite are useful for causal prophylaxis of malaria. In this study, four lichen metabolites, evernic acid (1), vulpic acid (2), psoromic acid (3), and (+)-usnic acid (4), were evaluated against LS parasites of Plasmodium berghei. Inhibition of P. falciparum blood stage (BS) parasites was also assessed to determine stage specificity. Compound 4 displayed the highest LS activity and stage specificity (LS IC50 value 2.3 µM, BS IC50 value 47.3 µM). The compounds 1-3 inhibited one or more enzymes (PfFabI, PfFabG, and PfFabZ) from the plasmodial fatty acid biosynthesis (FAS-II) pathway, a potential drug target for LS activity. To determine species specificity and to clarify the mechanism of reported antibacterial effects, 1-4 were also evaluated against FabI homologues and whole cells of various pathogens (S. aureus, E. coli, M. tuberculosis). Molecular modeling studies suggest that lichen acids act indirectly via binding to allosteric sites on the protein surface of the FAS-II enzymes. Potential toxicity of compounds was assessed in human hepatocyte and cancer cells (in vitro) as well as in a zebrafish model (in vivo). This study indicates the therapeutic and prophylactic potential of lichen metabolites as antibacterial and antiplasmodial agents.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Líquenes/química , Hígado/parasitología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/sangre , Antimaláricos/química , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/sangre , Inhibidores Enzimáticos/química , Acido Graso Sintasa Tipo II/sangre , Hepatocitos/efectos de los fármacos , Humanos , Malaria/tratamiento farmacológico , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/enzimología , Proteínas Protozoarias/sangre , Proteínas Protozoarias/farmacología , Staphylococcus aureus/efectos de los fármacos , Pez Cebra
7.
IEEE Trans Cybern ; 52(12): 13684-13698, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34936567

RESUMEN

In this article, a new idea of chaos synchronization and chaos-based secure communication is developed. First, the chaotic master system is used as a transmitter in chaos-based secure communication, then a drive signal is constructed, and the information message is encrypted into the drive signal to form a transmitted signal for secure communication. Second, in the receiver, a recurrent Takagi-Sugeno-Kang (TSK) fuzzy brain emotional learning cerebellar model articulation controller (RTFBECAC) is developed to control the slave system to follow the master system in the transmitter. Third, after descripting the chaotic signal, the embedded information message can be recovered. Besides, the stability problem is analyzed in detail based on the stability theory. Finally, two simulation examples, including audio signal and image, are introduced to illustrate the effectiveness and the advantages of the proposed method.


Asunto(s)
Algoritmos , Comunicación , Simulación por Computador , Encéfalo
8.
RSC Adv ; 11(53): 33438-33446, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497518

RESUMEN

Understanding the thermodynamics and kinetics of the binding process of an antibody to the SARS-CoV-2 receptor-binding domain (RBD) of the spike protein is very important for the development of COVID-19 vaccines. In particular, it is essential to understand how the binding mechanism may change under the effects of RBD mutations. In this context, we have demonstrated that the South African variant (B1.351 or 501Y.V2) can resist the neutralizing antibody (NAb). Three substitutions in the RBD including K417N, E484K, and N501Y alter the free energy landscape, binding pose, binding free energy, binding kinetics, hydrogen bonding, nonbonded contacts, and unbinding pathway of RBD + NAb complexes. The low binding affinity of NAb to 501Y.V2 RBD confirms the antibody resistance of the South African variant. Moreover, the fragment of NAb + RBD can be used as an affordable model to investigate changes in the binding process between the mutated RBD and antibodies.

9.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34404749

RESUMEN

In recent years there has been extensive research on malformations of cortical development (MCDs) that result in clinical features like developmental delay, intellectual disability, and drug-resistant epilepsy (DRE). Various studies highlighted the contribution of microtubule-associated genes (including tubulin and kinesin encoding genes) in MCD development. It has been reported that de novo mutations in KIF2A, a member of the kinesin-13 family, are linked to brain malformations and DRE. Although it is known that KIF2A functions by regulating microtubule depolymerization via an ATP-driven process, in vivo implications of KIF2A loss of function remain partly unclear. Here, we present a novel kif2a knock-out zebrafish model, showing hypoactivity, habituation deficits, pentylenetetrazole-induced seizure susceptibility and microcephaly, as well as neuronal cell proliferation defects and increased apoptosis. Interestingly, kif2a-/- larvae survived until adulthood and were fertile. Notably, our kif2a zebrafish knock-out model demonstrated many phenotypic similarities to KIF2A mouse models. This study provides valuable insights into the functional importance of kif2a in zebrafish and phenotypical hallmarks related to KIF2A mutations. Ultimately, this model could be used in a future search for more effective therapies that alleviate the clinical symptoms typically associated with MCDs.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Animales , Epilepsia/genética , Cinesinas/genética , Ratones , Proteínas Represoras , Tubulina (Proteína) , Pez Cebra
10.
RSC Adv ; 11(61): 38495-38504, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-35493244

RESUMEN

The spread of severe acute respiratory syndrome coronavirus 2 novel coronavirus (SARS-CoV-2) worldwide has caused the coronavirus disease 2019 (COVID-19) pandemic. A hundred million people were infected, resulting in several millions of death worldwide. In order to prevent viral replication, scientists have been aiming to prevent the biological activity of the SARS-CoV-2 main protease (3CL pro or Mpro). In this work, we demonstrate that using a reasonable combination of deep-learning calculations and atomistic simulations could lead to a new approach for developing SARS-CoV-2 main protease (Mpro) inhibitors. Initially, the binding affinities of the natural compounds to SARS-CoV-2 Mpro were estimated via atomistic simulations. The compound tomatine, thevetine, and tribuloside could bind to SARS-CoV-2 Mpro with nanomolar/high-nanomolar affinities. Secondly, the deep-learning (DL) calculations were performed to chemically alter the top-lead natural compounds to improve ligand-binding affinity. The obtained results were then validated by free energy calculations using atomistic simulations. The outcome of the research will probably boost COVID-19 therapy.

11.
Front Mol Neurosci ; 14: 753936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720874

RESUMEN

Epilepsy is a common disorder of the brain characterized by spontaneous recurrent seizures, which develop gradually during a process called epileptogenesis. The mechanistic processes underlying the changes of brain tissue and networks toward increased seizure susceptibility are not fully understood. In rodents, injection of kainic acid (KA) ultimately leads to the development of spontaneous epileptic seizures, reflecting similar neuropathological characteristics as seen in patients with temporal lobe epilepsy (TLE). Although this model has significantly contributed to increased knowledge of epileptogenesis, it is technically demanding, costly to operate and hence not suitable for high-throughput screening of anti-epileptic drugs (AEDs). Zebrafish, a vertebrate with complementary advantages to rodents, is an established animal model for epilepsy research. Here, we generated a novel KA-induced epilepsy model in zebrafish larvae that we functionally and pharmacologically validated. KA was administered by pericardial injection at an early zebrafish larval stage. The epileptic phenotype induced was examined by quantification of seizure-like behavior using automated video recording, and of epileptiform brain activity measured via local field potential (LFP) recordings. We also assessed GFP-labeled GABAergic and RFP-labeled glutamatergic neurons in double transgenic KA-injected zebrafish larvae, and examined the GABA and glutamate levels in the larval heads by liquid chromatography with tandem mass spectrometry detection (LC-MS/MS). Finally, KA-injected larvae were exposed to five commonly used AEDs by immersion for pharmacological characterization of the model. Shortly after injection, KA induced a massive damage and inflammation in the zebrafish brain and seizure-like locomotor behavior. An abnormal reorganization of brain circuits was observed, a decrease in both GABAergic and glutamatergic neuronal population and their associated neurotransmitters. Importantly, these changes were accompanied by spontaneous and continuous epileptiform brain discharges starting after a short latency period, as seen in KA rodent models and reminiscent of human pathology. Three out of five AEDs tested rescued LFP abnormalities but did not affect the seizure-like behavior. Taken together, for the first time we describe a chemically-induced larval zebrafish epilepsy model offering unique insights into studying epileptogenic processes in vivo and suitable for high-throughput AED screening purposes and rapid genetic investigations.

12.
Methods Mol Biol ; 1981: 273-289, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016661

RESUMEN

Cholestasis is a condition that impairs bile flow, resulting in retention of bile fluid in the liver. It may cause significant morbidity and mortality due to pruritus, malnutrition, and complications from portal hypertension secondary to biliary cirrhosis. The zebrafish (Danio rerio) has emerged as a valuable model organism for studying cholestasis that complements with the in vitro systems and rodent models. Its main advantages include conserved mechanisms of liver development and bile formation, rapid external development, ease of monitoring hepatobiliary morphology and function in live larvae, and accessibility to genetic and chemical manipulations. In this chapter, we provide an overview of the existing zebrafish models of cholestatic liver diseases. We discuss the strengths and limitations of using zebrafish to study cholestasis. We also provide step-by-step descriptions of the methodologies for analyzing cholestatic phenotypes in zebrafish.


Asunto(s)
Colestasis/patología , Modelos Animales de Enfermedad , Hepatopatías/patología , Pez Cebra , Animales , Conductos Biliares/metabolismo , Conductos Biliares/patología , Colestasis/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías/metabolismo
13.
Curr Pathobiol Rep ; 5(2): 207-221, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29098121

RESUMEN

PURPOSE OF REVIEW: The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. RECENT FINDINGS: The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. SUMMARY: In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.

14.
Sci Rep ; 7: 42888, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220815

RESUMEN

Cbx3/HP1γ is a histone reader whose function in the immune system is not completely understood. Here, we demonstrate that in CD8+ T cells, Cbx3/HP1γ insufficiency leads to chromatin remodeling accompanied by enhanced Prf1, Gzmb and Ifng expression. In tumors obtained from Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells, there is an increase of CD8+ effector T cells expressing the stimulatory receptor Klrk1/NKG2D, a decrease in CD4+ CD25+ FOXP3+ regulatory T cells (Treg cells) as well as CD25+ CD4+ T cells expressing the inhibitory receptor CTLA4. Together these changes in the tumor immune environment may have mitigated tumor burden in Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells. These findings suggest that targeting Cbx3/HP1γ can represent a rational therapeutic approach to control growth of solid tumors.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Proteínas Cromosómicas no Histona/genética , Animales , Apoptosis , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/trasplante , Antígeno CTLA-4/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/deficiencia , Técnicas de Cocultivo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Histonas/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/patología , Neoplasias/terapia , Perforina/genética , Perforina/metabolismo , ARN Polimerasa II/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
15.
Sci Rep ; 6: 37145, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27872490

RESUMEN

Nanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized. In this study, we investigated the toxicity of silica nanoparticles with diameters 20, 50 and 80 nm using an in vivo zebrafish platform that analyzes multiple endpoints related to developmental, cardio-, hepato-, and neurotoxicity. Results show that except for an acceleration in hatching time and alterations in the behavior of zebrafish embryos/larvae, silica NPs did not elicit any developmental defects, nor any cardio- and hepatotoxicity. The behavioral alterations were consistent for both embryonic photomotor and larval locomotor response and were dependent on the concentration and the size of silica NPs. As embryos and larvae exhibited a normal touch response and early hatching did not affect larval locomotor response, the behavior changes observed are most likely the consequence of modified neuroactivity. Overall, our results suggest that silica NPs do not cause any developmental, cardio- or hepatotoxicity, but they pose a potential risk for the neurobehavioral system.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas , Determinación de Punto Final , Corazón/efectos de los fármacos , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Pez Cebra
16.
Front Immunol ; 5: 271, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971082

RESUMEN

In vitro observations suggest a role for the mouse heterochromatin protein 1γ (HP-1γ) in the immune system. However, it has not been shown if and how HP-1γ contributes to immunity in vivo. Here we show that in mice, HP-1γ positively regulates the germinal center reaction and high-affinity antibody response to thymus (T)-dependent antigens by limiting the size of CD8(+) regulatory T-cell (Treg) compartment without affecting progenitor B- or T-cell-development. Moreover, HP-1γ does not control cell proliferation or class switch recombination. Haploinsufficiency of cbx-3 (gene encoding HP-1γ) is sufficient to expand the CD8(+) Treg population and impair the immune response in mice despite the presence of wild-type HP-1α and HP-1ß. This is the first in vivo evidence demonstrating the non-redundant role of HP-1γ in immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA