Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240752

RESUMEN

Heat stress is a substantial and imminent threat to plant growth and development. Understanding its adverse effects on plant development at the molecular level is crucial for sustainable agriculture. However, the molecular mechanism underlying how heat stress causes developmental defects in flowers remains poorly understood. Here, we identified Indole-3-Acetic Acid 8 (IAA8), a repressor of auxin signaling, as a substrate of mitogen-activated protein kinases (MPKs) in Arabidopsis thaliana, and found that MPK-mediated phosphorylation of IAA8 inhibits flower development. MPKs phosphorylated three residues of IAA8: S74, T77, and S135. Interestingly, transgenic plants overexpressing a phospho-mimicking mutant of IAA8 (IAA8DDD OX) exhibited defective flower development due to high IAA8 levels. Furthermore, MPK-mediated phosphorylation inhibited IAA8 polyubiquitination, thereby significantly increasing its stability. Additionally, the expression of key transcription factors involved in flower development, such as bZIP and MYB genes, was significantly perturbed in the IAA8DDD OX plants. Collectively, our study demonstrates that heat stress inhibits flower development by perturbing the expression of flower development genes through the MPK-mediated phosphorylation of IAA8, suggesting that Aux/IAA phosphorylation enables plants to fine-tune their development in response to environmental stress.

2.
Biochem Biophys Res Commun ; 422(1): 181-6, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22575450

RESUMEN

Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Serina/genética , Serina/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA