Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Med Imaging Graph ; 113: 102353, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38387114

RESUMEN

Creating synthetic CT (sCT) from magnetic resonance (MR) images enables MR-based treatment planning in radiation therapy. However, the MR images used for MR-guided adaptive planning are often truncated in the boundary regions due to the limited field of view and the need for sequence optimization. Consequently, the sCT generated from these truncated MR images lacks complete anatomic information, leading to dose calculation error for MR-based adaptive planning. We propose a novel structure-completion generative adversarial network (SC-GAN) to generate sCT with full anatomic details from the truncated MR images. To enable anatomy compensation, we expand input channels of the CT generator by including a body mask and introduce a truncation loss between sCT and real CT. The body mask for each patient was automatically created from the simulation CT scans and transformed to daily MR images by rigid registration as another input for our SC-GAN in addition to the MR images. The truncation loss was constructed by implementing either an auto-segmentor or an edge detector to penalize the difference in body outlines between sCT and real CT. The experimental results show that our SC-GAN achieved much improved accuracy of sCT generation in both truncated and untruncated regions compared to the original cycleGAN and conditional GAN methods.


Asunto(s)
Tomografía Computarizada por Rayos X , Humanos , Simulación por Computador
2.
Head Neck ; 46(1): 29-36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37853958

RESUMEN

BACKGROUND: Sinonasal NUT carcinoma is an extremely rare, lethal malignancy with limited literature. METHODS: A case series was conduction of all patients with sinonasal NUT carcinoma at a single institution between 2010 and 2022. Survival and associated were evaluated. A systematic review of the literature was performed. RESULTS: In 12 patients, followed for a median of 1.5 years, the median overall survival (OS) and disease-specific survival (DSS) were both 14.6 months. Patients with maxillary sinus tumors were 91% more likely to survive (hazard ratio [HR]: 0.094, 95% confidence interval [CI]: 0.011-0.78, p = 0.011). Patients with higher-stage disease stage had worse OS (stage IVb-c vs. III-IVa, p = 0.05). All three patients who were alive with no evidence of disease received induction chemotherapy. CONCLUSION: For patients with sinonasal NUT carcinoma, the median survival was 15 months but better with lower-stage and maxillary tumors. Induction chemotherapy may be beneficial.


Asunto(s)
Carcinoma , Neoplasias del Seno Maxilar , Humanos , Carcinoma/terapia , Carcinoma/patología , Neoplasias del Seno Maxilar/terapia , Neoplasias del Seno Maxilar/patología , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
3.
Med Phys ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896829

RESUMEN

BACKGROUND: Head and neck (HN) gross tumor volume (GTV) auto-segmentation is challenging due to the morphological complexity and low image contrast of targets. Multi-modality images, including computed tomography (CT) and positron emission tomography (PET), are used in the routine clinic to assist radiation oncologists for accurate GTV delineation. However, the availability of PET imaging may not always be guaranteed. PURPOSE: To develop a deep learning segmentation framework for automated GTV delineation of HN cancers using a combination of PET/CT images, while addressing the challenge of missing PET data. METHODS: Two datasets were included for this study: Dataset I: 524 (training) and 359 (testing) oropharyngeal cancer patients from different institutions with their PET/CT pairs provided by the HECKTOR Challenge; Dataset II: 90 HN patients(testing) from a local institution with their planning CT, PET/CT pairs. To handle potentially missing PET images, a model training strategy named the "Blank Channel" method was implemented. To simulate the absence of a PET image, a blank array with the same dimensions as the CT image was generated to meet the dual-channel input requirement of the deep learning model. During the model training process, the model was randomly presented with either a real PET/CT pair or a blank/CT pair. This allowed the model to learn the relationship between the CT image and the corresponding GTV delineation based on available modalities. As a result, our model had the ability to handle flexible inputs during prediction, making it suitable for cases where PET images are missing. To evaluate the performance of our proposed model, we trained it using training patients from Dataset I and tested it with Dataset II. We compared our model (Model 1) with two other models which were trained for specific modality segmentations: Model 2 trained with only CT images, and Model 3 trained with real PET/CT pairs. The performance of the models was evaluated using quantitative metrics, including Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff Distance (HD95). In addition, we evaluated our Model 1 and Model 3 using the 359 test cases in Dataset I. RESULTS: Our proposed model(Model 1) achieved promising results for GTV auto-segmentation using PET/CT images, with the flexibility of missing PET images. Specifically, when assessed with only CT images in Dataset II, Model 1 achieved DSC of 0.56 ± 0.16, MSD of 3.4 ± 2.1 mm, and HD95 of 13.9 ± 7.6 mm. When the PET images were included, the performance of our model was improved to DSC of 0.62 ± 0.14, MSD of 2.8 ± 1.7 mm, and HD95 of 10.5 ± 6.5 mm. These results are comparable to those achieved by Model 2 and Model 3, illustrating Model 1's effectiveness in utilizing flexible input modalities. Further analysis using the test dataset from Dataset I showed that Model 1 achieved an average DSC of 0.77, surpassing the overall average DSC of 0.72 among all participants in the HECKTOR Challenge. CONCLUSIONS: We successfully refined a multi-modal segmentation tool for accurate GTV delineation for HN cancer. Our method addressed the issue of missing PET images by allowing flexible data input, thereby providing a practical solution for clinical settings where access to PET imaging may be limited.

4.
Clin Transl Radiat Oncol ; 46: 100760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38510980

RESUMEN

Purpose: MR-guided radiotherapy (MRgRT) has the advantage of utilizing high soft tissue contrast imaging to track daily changes in target and critical organs throughout the entire radiation treatment course. Head and neck (HN) stereotactic body radiation therapy (SBRT) has been increasingly used to treat localized lesions within a shorter timeframe. The purpose of this study is to examine the dosimetric difference between the step-and-shot intensity modulated radiation therapy (IMRT) plans on Elekta Unity and our clinical volumetric modulated arc therapy (VMAT) plans on Varian TrueBeam for HN SBRT. Method: Fourteen patients treated on TrueBeam sTx with VMAT treatment plans were re-planned in the Monaco treatment planning system for Elekta Unity MR-Linac (MRL). The plan qualities, including target coverage, conformity, homogeneity, nearby critical organ doses, gradient index and low dose bath volume, were compared between VMAT and Monaco IMRT plans. Additionally, we evaluated the Unity adaptive plans of adapt-to-position (ATP) and adapt-to-shape (ATS) workflows using simulated setup errors for five patients and assessed the outcomes of our treated patients. Results: Monaco IMRT plans achieved comparable results to VMAT plans in terms of target coverage, uniformity and homogeneity, with slightly higher target maximum and mean doses. The critical organ doses in Monaco IMRT plans all met clinical goals; however, the mean doses and low dose bath volumes were higher than in VMAT plans. The adaptive plans demonstrated that the ATP workflow may result in degraded target coverage and OAR doses for HN SBRT, while the ATS workflow can maintain the plan quality. Conclusion: The use of Monaco treatment planning and online adaptation can achieve dosimetric results comparable to VMAT plans, with the additional benefits of real-time tracking of target volume and nearby critical structures. This offers the potential to treat aggressive and variable tumors in HN SBRT and improve local control and treatment toxicity.

5.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798400

RESUMEN

Purpose: Radiation induced carotid artery disease (RICAD) is a major cause of morbidity and mortality among survivors of oropharyngeal cancer. This study leveraged standard-of-care CT scans to detect volumetric changes in the carotid arteries of patients receiving unilateral radiotherapy (RT) for early tonsillar cancer, and to determine dose-response relationship between RT and carotid volume changes, which could serve as an early imaging marker of RICAD. Methods and Materials: Disease-free cancer survivors (>3 months since therapy and age >18 years) treated with intensity modulated RT for early (T1-2, N0-2b) tonsillar cancer with pre- and post-therapy contrast-enhanced CT scans available were included. Patients treated with definitive surgery, bilateral RT, or additional RT before the post-RT CT scan were excluded. Pre- and post-treatment CTs were registered to the planning CT and dose grid. Isodose lines from treatment plans were projected onto both scans, facilitating the delineation of carotid artery subvolumes in 5 Gy increments (i.e. received 50-55 Gy, 55-60 Gy, etc.). The percent-change in sub-volumes across each dose range was statistically examined using the Wilcoxon rank-sum test. Results: Among 46 patients analyzed, 72% received RT alone, 24% induction chemotherapy followed by RT, and 4% concurrent chemoradiation. The median interval from RT completion to the latest, post-RT CT scan was 43 months (IQR 32-57). A decrease in the volume of the irradiated carotid artery was observed in 78% of patients, while there was a statistically significant difference in mean %-change (±SD) between the total irradiated and spared carotid volumes (7.0±9.0 vs. +3.5±7.2, respectively, p<.0001). However, no significant dose-response trend was observed in the carotid artery volume change withing 5 Gy ranges (mean %-changes (±SD) for the 50-55, 55-60, 60-65, and 65-70+ Gy ranges [irradiated minus spared]: -13.1±14.7, -9.8±14.9, -6.9±16.2, -11.7±11.1, respectively). Notably, two patients (4%) had a cerebrovascular accident (CVA), both occurring in patients with a greater decrease in carotid artery volume in the irradiated vs the spared side. Conclusions: Our data show that standard-of-care oncologic surveillance CT scans can effectively detect reductions in carotid volume following RT for oropharyngeal cancer. Changes were equivalent between studied dose ranges, denoting no further dose-response effect beyond 50 Gy. The clinical utility of carotid volume changes for risk stratification and CVA prediction warrants further evaluation.

6.
Phys Imaging Radiat Oncol ; 29: 100540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38356692

RESUMEN

Background and Purpose: Auto-contouring of complex anatomy in computed tomography (CT) scans is a highly anticipated solution to many problems in radiotherapy. In this study, artificial intelligence (AI)-based auto-contouring models were clinically validated for lymph node levels and structures of swallowing and chewing in the head and neck. Materials and Methods: CT scans of 145 head and neck radiotherapy patients were retrospectively curated. One cohort (n = 47) was used to analyze seven lymph node levels and the other (n = 98) used to analyze 17 swallowing and chewing structures. Separate nnUnet models were trained and validated using the separate cohorts. For the lymph node levels, preference and clinical acceptability of AI vs human contours were scored. For the swallowing and chewing structures, clinical acceptability was scored. Quantitative analyses of the test sets were performed for AI vs human contours for all structures using overlap and distance metrics. Results: Median Dice Similarity Coefficient ranged from 0.77 to 0.89 for lymph node levels and 0.86 to 0.96 for chewing and swallowing structures. The AI contours were superior to or equally preferred to the manual contours at rates ranging from 75% to 91%; there was not a significant difference in clinical acceptability for nodal levels I-V for manual versus AI contours. Across all AI-generated lymph node level contours, 92% were rated as usable with stylistic to no edits. Of the 340 contours in the chewing and swallowing cohort, 4% required minor edits. Conclusions: An accurate approach was developed to auto-contour lymph node levels and chewing and swallowing structures on CT images for patients with intact nodal anatomy. Only a small portion of test set auto-contours required minor edits.

7.
Clin Transl Radiat Oncol ; 44: 100700, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38058404

RESUMEN

Purpose/Objectives: The purpose of this study was to evaluate patterns of locoregional recurrence (LRR) after surgical salvage and adjuvant reirradiation with IMRT for recurrent head and neck squamous cell cancer (HNSCC). Materials/Methods: Patterns of LRR for 61 patients treated consecutively between 2003 and 2014 who received post-operative IMRT reirradiation to ≥ 60 Gy for recurrent HNSCC were determined by 2 methods: 1) physician classification via visual comparison of post-radiotherapy imaging to reirradiation plans; and 2) using deformable image registration (DIR). Those without evaluable CT planning image data were excluded. All recurrences were verified by biopsy or radiological progression. Failures were defined as in-field, marginal, or out-of-field. Logistic regression analyses were performed to identify predictors for LRR. Results: A total of 55 patients were eligible for analysis and 23 (42 %) had documented LRR after reirradiation. Location of recurrent disease prior to salvage surgery (lymphatic vs. mucosal) was the most significant predictor of LRR after post-operative reirradiation with salvage rate of 67 % for lymphatic vs. 33 % for mucosal sites (p = 0.037). Physician classification of LRR yielded 14 (61 %) in-field failures, 3 (13 %) marginal failures, and 6 (26 %) out-of-field failures, while DIR yielded 10 (44 %) in-field failures, 4 (17 %) marginal failures, and 9 (39 %) out-of-field failures. Most failures (57 %) occurred within the original site of recurrence or first echelon lymphatic drainage. Of patients who had a free flap placed during salvage surgery, 56 % of failures occurred within 1 cm of the surgical flap. Conclusion: Our study highlights the role of DIR in enhancing the accuracy and consistency of POF analysis. Compared to traditional visual inspection, DIR reduces interobserver variability and provides more nuanced insights into dose-specific and spatial parameters of locoregional recurrences. Additionally, the study identifies the location of the initial recurrence as a key predictor of subsequent locoregional recurrence after salvage surgery and re-IMRT.

8.
Head Neck ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073252

RESUMEN

BACKGROUND: Treatment for dural recurrence of olfactory neuroblastoma (ONB) is not standardized. We assess the outcomes of stereotactic body radiotherapy (SBRT) in this population. METHODS: ONB patients with dural recurrences treated between 2013 and 2022 on a prospective registry were included. Tumor control, survival, and patient-reported quality of life were analyzed. RESULTS: Fourteen patients with 32 dural lesions were evaluated. Time to dural recurrence was 58.3 months. Thirty lesions (94%) were treated with SBRT to a median dose of 27 Gy in three fractions. Two patients (3 of 32 lesions; 9%) developed in-field radiographic progression, five patients (38%) experienced progression in non-contiguous dura. Two-year local control was 85% (95% CI: 51-96%). There were no >grade 3 acute toxicities and 1 case of late grade 3 brain radionecrosis. CONCLUSION: In this largest study of SBRT reirradiation for ONB dural recurrence to date, high local control rates with minimal toxicity were attainable.

9.
Oral Oncol Rep ; 72023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38638130

RESUMEN

Objectives: Pain during Radiation Therapy (RT) for oral cavity/oropharyngeal cancer (OC/OPC) is a clinical challenge due to its multifactorial etiology and variable management. The objective of this study was to define complex pain profiles through temporal characterization of pain descriptors, physiologic state, and RT-induced toxicities for pain trajectories understanding. Materials and methods: Using an electronic health record registry, 351 OC/OPC patients treated with RT from 2013 to 2021 were included. Weekly numeric scale pain scores, pain descriptors, vital signs, physician-reported toxicities, and analgesics were analyzed using linear mixed effect models and Spearman's correlation. Area under the pain curve (AUCpain) was calculated to measure pain burden over time. Results: Median pain scores increased from 0 during the weekly visit (WSV)-1 to 5 during WSV-7. By WSV-7, 60% and 74% of patients reported mouth and throat pain, respectively, with a median pain score of 5. Soreness and burning pain peaked during WSV-6/7 (51%). Median AUCpain was 16% (IQR (9.3-23)), and AUCpain significantly varied based on gender, tumor site, surgery, drug use history, and pre-RT pain. A temporal increase in mucositis and dermatitis, declining mean bodyweight (-7.1%; P < 0.001) and mean arterial pressure (MAP) 6.8 mmHg; P < 0.001 were detected. Pulse rate was positively associated while weight and MAP were negatively associated with pain over time (P < 0.001). Conclusion: This study provides insight on in-depth characterization and associations between dynamic pain, physiologic, and toxicity kinetics. Our findings support further needs of optimized pain control through temporal data-driven clinical decision support systems for acute pain management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA