Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant Cell ; 36(5): 1937-1962, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242838

RESUMEN

Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis toward the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Frío , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Mutación , Proteolisis
2.
Planta ; 251(5): 96, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32297017

RESUMEN

MAIN CONCLUSION: The accumulation of NiCo following the termination of the accumulation of iron in chloroplast suggests that NiCo is not solely involved in iron uptake processes of chloroplasts. Chloroplast iron (Fe) uptake is thought to be operated by a complex containing permease in chloroplast 1 (PIC1) and nickel-cobalt transporter (NiCo) proteins, whereas the role of other Fe homeostasis-related transporters such as multiple antibiotic resistance protein 1 (MAR1) is less characterized. Although pieces of information exist on the regulation of chloroplast Fe uptake, including the effect of plant Fe homeostasis, the whole system has not been revealed in detail yet. Thus, we aimed to follow leaf development-scale changes in the chloroplast Fe uptake components PIC1, NiCo and MAR1 under deficient, optimal and supraoptimal Fe nutrition using Brassica napus as model. Fe deficiency decreased both the photosynthetic activity and the Fe content of plastids. Supraoptimal Fe nutrition caused neither Fe accumulation in chloroplasts nor any toxic effects, thus only fully saturated the need for Fe in the leaves. In parallel with the increasing Fe supply of plants and ageing of the leaves, the expression of BnPIC1 was tendentiously repressed. Though transcript and protein amount of BnNiCo tendentiously increased during leaf development, it was even markedly upregulated in ageing leaves. The relative transcript amount of BnMAR1 increased mainly in ageing leaves facing Fe deficiency. Taken together chloroplast physiology, Fe content and transcript amount data, the exclusive participation of NiCo in the chloroplast Fe uptake is not supported. Saturation of the Fe requirement of chloroplasts seems to be linked to the delay of decomposing the photosynthetic apparatus and keeping chloroplast Fe homeostasis in a rather constant status together with a supressed Fe uptake machinery.


Asunto(s)
Brassica napus/enzimología , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Proteínas de Transporte de Catión/genética , Cloroplastos/metabolismo , Cobalto/metabolismo , Homeostasis , Deficiencias de Hierro , Proteínas de Transporte de Membrana/genética , Níquel/metabolismo , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Cell Physiol ; 60(7): 1420-1439, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31093670

RESUMEN

Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.


Asunto(s)
Hierro/metabolismo , Plantas/metabolismo , Cloroplastos/metabolismo , Homeostasis , Mitocondrias/metabolismo , Fenómenos Fisiológicos de las Plantas , Plastidios/metabolismo
4.
Biochem Cell Biol ; 97(3): 243-256, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30208283

RESUMEN

By binding to and inserting into the lipid bilayer, amphiphilic α-helices of proteins are involved in the curvature of biological membranes in all organisms. In particular, they are involved in establishing the complex membrane architecture of intracellular organelles like the endoplasmatic reticulum, Golgi apparatus, mitochondria, and chloroplasts. Thus, amphiphilic α-helices are essential for maintenance of cellular metabolism and fitness of organisms. Here we focus on the structure and function of membrane-intrinsic proteins, which are involved in membrane curvature by amphiphilic α-helices, in mitochondria and chloroplasts of the eukaryotic model organisms yeast and Arabidopsis thaliana. Further, we propose a model for transport of fatty acids and lipid compounds across the envelope of chloroplasts in which amphiphilic α-helices might play a role.


Asunto(s)
Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Orgánulos/química , Orgánulos/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Humanos , Conformación Proteica en Hélice alfa
5.
PLoS Biol ; 13(2): e1002053, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25646734

RESUMEN

Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Retículo Endoplásmico/metabolismo , Fertilidad/genética , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plastidios/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Alineación de Secuencia
6.
J Biol Chem ; 291(34): 17848-60, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27339897

RESUMEN

Chloroplasts and mitochondria are unique endosymbiotic cellular organelles surrounded by two membranes. Essential metabolic networking between these compartments and their hosting cells requires the exchange of a large number of biochemical pathway intermediates in a directed and coordinated fashion across their inner and outer envelope membranes. Here, we describe the identification and functional characterization of a highly specific, regulated solute channel in the outer envelope of chloroplasts, named OEP40. Loss of OEP40 function in Arabidopsis thaliana results in early flowering under cold temperature. The reconstituted recombinant OEP40 protein forms a high conductance ß-barrel ion channel with subconductant states in planar lipid bilayers. The OEP40 channel is slightly cation-selective PK+/PCl- ≈ 4:1 and rectifying (i⃗/i⃖ ≅ 2) with a slope conductance of Gmax ≅ 690 picosiemens. The OEP40 channel has a restriction zone diameter of ≅1.4 nm and is permeable for glucose, glucose 1-phosphate and glucose 6-phosphate, but not for maltose. Moreover, channel properties are regulated by trehalose 6-phosphate, which cannot permeate. Altogether, our results indicate that OEP40 is a "glucose-gate" in the outer envelope membrane of chloroplasts, facilitating selective metabolite exchange between chloroplasts and the surrounding cell.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Cloroplastos/química , Cloroplastos/química , Membranas Intracelulares/química , Proteínas de la Membrana/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Glucosa/química , Glucosa/genética , Glucosa/metabolismo , Membranas Intracelulares/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
7.
Plant Physiol ; 172(4): 2471-2490, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27789739

RESUMEN

A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Transporte de ARN , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia/química , Proteínas de Unión al ARN/metabolismo , Especificidad de la Especie , Transcriptoma/genética
8.
Plant Cell ; 26(2): 777-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24585838

RESUMEN

The biogenesis and activity of chloroplasts in both vascular plants and algae depends on an intracellular network of nucleus-encoded, trans-acting factors that control almost all aspects of organellar gene expression. Most of these regulatory factors belong to the helical repeat protein superfamily, which includes tetratricopeptide repeat, pentatricopeptide repeat, and the recently identified octotricopeptide repeat (OPR) proteins. Whereas green algae express many different OPR proteins, only a single orthologous OPR protein is encoded in the genomes of most land plants. Here, we report the characterization of the only OPR protein in Arabidopsis thaliana, RAP, which has previously been implicated in plant pathogen defense. Loss of RAP led to a severe defect in processing of chloroplast 16S rRNA resulting in impaired chloroplast translation and photosynthesis. In vitro RNA binding and RNase protection assays revealed that RAP has an intrinsic and specific RNA binding capacity, and the RAP binding site was mapped to the 5' region of the 16S rRNA precursor. Nucleoid localization of RAP was shown by transient green fluorescent protein import assays, implicating the nucleoid as the site of chloroplast rRNA processing. Taken together, our data indicate that the single OPR protein in Arabidopsis is important for a basic process of chloroplast biogenesis.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , ARN Ribosómico 16S/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Biosíntesis de Proteínas , Precursores del ARN/metabolismo , ARN de Planta/metabolismo , Secuencias Repetitivas de Aminoácido
9.
J Proteome Res ; 13(6): 2941-53, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24792535

RESUMEN

Protein profiles of inner (IE) and outer (OE) chloroplast envelope membrane preparations from pea were studied using shotgun nLC-MS/MS and two-dimensional electrophoresis, and 589 protein species (NCBI entries) were identified. The relative enrichment of each protein in the IE/OE pair of membranes was used to provide an integrated picture of the chloroplast envelope. From the 546 proteins identified with shotgun, 321 showed a significant differential distribution, with 180 being enriched in IE and 141 in OE. To avoid redundancy and facilitate in silico localization, Arabidopsis homologues were used to obtain a nonredundant list of 409 envelope proteins, with many showing significant OE or IE enrichment. Functional classification reveals that IE is a selective barrier for transport of many metabolites and plays a major role in controlling protein homeostasis, whereas proteins in OE are more heterogeneous and participate in a wide range of processes. Data support that metabolic processes previously described to occur in the envelope such as chlorophyll and tocopherol biosynthesis can be ascribed to the IE, whereas others such as carotenoid or lipid biosynthesis occur in both membranes. Furthermore, results allow empirical assignation to the IE and/or OE of many proteins previously assigned to the bulk chloroplast envelope proteome.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Pisum sativum/metabolismo , Proteoma/metabolismo , Transporte Biológico , Vías Biosintéticas , Clorofila/biosíntesis , Proteínas de Cloroplastos/aislamiento & purificación , Electroforesis en Gel Bidimensional , Homeostasis , Membranas Intracelulares/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/aislamiento & purificación , Anotación de Secuencia Molecular , Proteoma/aislamiento & purificación , Proteómica , Tocoferoles/metabolismo
10.
Plant Physiol ; 159(4): 1477-87, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22706448

RESUMEN

Age-dependent leaf senescence and cell death in Arabidopsis (Arabidopsis thaliana) requires activation of the transcription factor ORESARA1 (ORE1) and is not initiated prior to a leaf age of 28 d. Here, we investigate the conditional execution of events that regulate early senescence and cell death in senescence-associated ubiquitin ligase1 (saul1) mutants, deficient in the PLANT U-BOX-ARMADILLO E3 ubiquitin ligase SAUL1. In saul1 mutants challenged with low light, the switch of age-dependent cell death was turned on prematurely, as indicated by the accumulation of ORE1 transcripts, induction of the senescence marker gene SENESCENCE-ASSOCIATED GENE12, and cell death. However, ORE1 accumulation by itself was not sufficient to cause saul1 phenotypes, as demonstrated by double mutant analysis. Exposure of saul1 mutants to low light for only 24 h did not result in visible symptoms of senescence; however, the senescence-promoting transcription factor genes WRKY53, WRKY6, and NAC-LIKE ACTIVATED BY AP3/PI were up-regulated, indicating that senescence in saul1 seedlings was already initiated. To resolve the time course of gene expression, microarray experiments were performed at narrow intervals. Differential expression of the genes involved in salicylic acid and defense mechanisms were the earliest events detected, suggesting a central role for salicylic acid in saul1 senescence and cell death. The salicylic acid content increased in low-light-treated saul1 mutants, and application of exogenous salicylic acid was indeed sufficient to trigger saul1 senescence in permissive light conditions. Double mutant analyses showed that PHYTOALEXIN DEFICIENT4 (PAD4) but not NONEXPRESSER OF PR GENES1 (NPR1) is essential for saul1 phenotypes. Our results indicate that saul1 senescence depends on the PAD4-dependent salicylic acid pathway but does not require NPR1 signaling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Mutación/genética , Ácido Salicílico/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/genética , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Muerte Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Salinidad , Plantones/citología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Cloruro de Sodio/farmacología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Exp Bot ; 64(10): 2665-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23682113

RESUMEN

Iron homeostasis is an important process for flower development and plant fertility. The role of plastids in these processes has been shown to be essential. To document the relationships between plastid iron homeostasis and flower biology further, a global study (transcriptome, proteome, metabolome, and hormone analysis) was performed of Arabidopsis flowers from wild-type and triple atfer1-3-4 ferritin mutant plants grown under iron-sufficient or excess conditions. Some major modifications in specific functional categories were consistently observed at these three omic levels, although no significant overlaps of specific transcripts and proteins were detected. These modifications concerned redox reactions and oxidative stress, as well as amino acid and protein catabolism, this latter point being exemplified by an almost 10-fold increase in urea concentration of atfer1-3-4 flowers from plants grown under iron excess conditions. The mutant background caused alterations in Fe-haem redox proteins located in membranes and in hormone-responsive proteins. Specific effects of excess Fe in the mutant included further changes in these categories, supporting the idea that the mutant is facing a more intense Fe/redox stress than the wild type. The mutation and/or excess Fe had a strong impact at the membrane level, as denoted by the changes in the transporter and lipid metabolism categories. In spite of the large number of genes and proteins responsive to hormones found to be regulated in this study, changes in the hormonal balance were restricted to cytokinins, especially in the mutant plants grown under Fe excess conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ferritinas/genética , Hierro/metabolismo , Metaboloma , Reguladores del Crecimiento de las Plantas/metabolismo , Proteoma/metabolismo , Transcriptoma , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Electroforesis en Gel Bidimensional , Ferritinas/metabolismo , Flores/química , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Espectrometría de Masas , Mutación , Proteoma/química , Proteoma/genética
12.
Plant Physiol ; 155(4): 1709-22, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21343424

RESUMEN

The membrane-spanning protein PIC1 (for permease in chloroplasts 1) in Arabidopsis (Arabidopsis thaliana) was previously described to mediate iron transport across the inner envelope membrane of chloroplasts. The albino phenotype of pic1 knockout mutants was reminiscent of iron-deficiency symptoms and characterized by severely impaired plastid development and plant growth. In addition, plants lacking PIC1 showed a striking increase in chloroplast ferritin clusters, which function in protection from oxidative stress by sequestering highly reactive free iron in their spherical protein shell. In contrast, PIC1-overexpressing lines (PIC1ox) in this study rather resembled ferritin loss-of-function plants. PIC1ox plants suffered from oxidative stress and leaf chlorosis, most likely originating from iron overload in chloroplasts. Later during growth, plants were characterized by reduced biomass as well as severely defective flower and seed development. As a result of PIC1 protein increase in the inner envelope membrane of plastids, flower tissue showed elevated levels of iron, while the content of other transition metals (copper, zinc, manganese) remained unchanged. Seeds, however, specifically revealed iron deficiency, suggesting that PIC1 overexpression sequestered iron in flower plastids, thereby becoming unavailable for seed iron loading. In addition, expression of genes associated with metal transport and homeostasis as well as photosynthesis was deregulated in PIC1ox plants. Thus, PIC1 function in plastid iron transport is closely linked to ferritin and plastid iron homeostasis. In consequence, PIC1 is crucial for balancing plant iron metabolism in general, thereby regulating plant growth and in particular fruit development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Transporte de Catión/metabolismo , Cloroplastos/enzimología , Hierro/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Catión/genética , Clorofila/análisis , Cloroplastos/ultraestructura , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Homeostasis , Peróxido de Hidrógeno/análisis , Membranas Intracelulares/metabolismo , Deficiencias de Hierro , Microscopía Electrónica de Transmisión , Estrés Oxidativo , Fenotipo , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , ARN de Planta/genética , Semillas/metabolismo
13.
J Exp Bot ; 63(5): 1919-36, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155670

RESUMEN

Previously, the OEP16.1 channel pore in the outer envelope membrane of mature pea (Pisum sativum) chloroplasts in vitro has been characterized to be selective for amino acids. Isolation of OEP16.2, a second OEP16 isoform from pea, in the current study allowed membrane localization and gene expression of OEP16 to be followed throughout seed development and germination of Arabidopsis thaliana and P. sativum. Thereby it can be shown on the transcript and protein level that the isoforms OEP16.1 and OEP16.2 in both plant species are alternating: whereas OEP16.1 is prominent in early embryo development and first leaves of the growing plantlet, OEP16.2 dominates in late seed development stages, which are associated with dormancy and desiccation, as well as early germination events. Further, OEP16.2 expression in seeds is under control of the phytohormone abscisic acid (ABA), leading to an ABA-hypersensitive phenotype of germinating oep16 knockout mutants. In consequence, the loss of OEP16 causes metabolic imbalance, in particular that of amino acids during seed development and early germination. It is thus concluded that in vivo OEP16 most probably functions in shuttling amino acids across the outer envelope of seed plastids.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Cloroplastos/metabolismo , Germinación/fisiología , Pisum sativum/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Transporte Biológico , Proteínas de Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Técnicas de Inactivación de Genes , Mutación , Pisum sativum/genética , Pisum sativum/crecimiento & desarrollo , Fenotipo , Hojas de la Planta/metabolismo , Plastidios/metabolismo , Isoformas de Proteínas , Semillas/genética , Semillas/crecimiento & desarrollo
14.
Proc Natl Acad Sci U S A ; 106(29): 12201-6, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19567834

RESUMEN

Chloroplast biogenesis in angiosperm plants requires the light-dependent transition from an etioplast stage. A key factor in this process is NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide. In a recent study the chloroplast outer envelope channel OEP16 was described to be involved in etioplast to chloroplast transition by forming the translocation pore for the precursor protein of PORA [Pollmann et al. (2007) Proc Natl Acad Sci USA 104:2019-2023]. This hypothesis was based on the finding that a single OEP16.1 knockout mutant in Arabidopsis thaliana was severely affected during seedling de-etiolation and PORA protein was absent in etioplasts. In contrast, in our study the identical T-DNA insertion line greened normally and showed normal etioplast to chloroplast transition, and mature PORA was present in etioplasts [Philippar et al. (2007) Proc Natl Acad Sci USA 104:678-683]. To address these conflicting results regarding the function of OEP16.1 for PORA import, we analyzed several lines segregating from the original OEP16.1 T-DNA insertion line. Thereby we can unequivocally show that the loss of OEP16.1 neither correlates with impaired PORA import nor causes the observed de-etiolation phenotype. Furthermore, we found that the mutant line contains at least 2 additional T-DNA insertions in the genes for the extracellular polygalacturonase converter AroGP1 and the plastid-localized chorismate mutase CM1. However, detailed examination of the de-etiolation phenotype and a genomewide transcriptional analysis revealed no direct influence of these genes on etioplast to chloroplast transition in Arabidopsis cotyledons.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Canales Iónicos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cotiledón/genética , Cotiledón/metabolismo , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Mutación/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Front Mol Biosci ; 9: 939834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120551

RESUMEN

In algae and land plants, transport of fatty acids (FAs) from their site of synthesis in the plastid stroma to the endoplasmic reticulum (ER) for assembly into acyl lipids is crucial for cellular lipid homeostasis, including the biosynthesis of triacylglycerol (TAG) for energy storage. In the unicellular green alga Chlamydomonas reinhardtii, understanding and engineering of these processes is of particular interest for microalga-based biofuel and biomaterial production. Whereas in the model plant Arabidopsis thaliana, FAX (fatty acid export) proteins have been associated with a function in plastid FA-export and hence TAG synthesis in the ER, the knowledge on the function and subcellular localization of this protein family in Chlamydomonas is still scarce. Among the four FAX proteins encoded in the Chlamydomonas genome, we found Cr-FAX1 and Cr-FAX5 to be involved in TAG production by functioning in chloroplast and ER membranes, respectively. By in situ immunolocalization, we show that Cr-FAX1 inserts into the chloroplast envelope, while Cr-FAX5 is located in ER membranes. Severe reduction of Cr-FAX1 or Cr-FAX5 proteins by an artificial microRNA approach results in a strong decrease of the TAG content in the mutant strains. Further, overexpression of chloroplast Cr-FAX1, but not of ER-intrinsic Cr-FAX5, doubled the content of TAG in Chlamydomonas cells. We therefore propose that Cr-FAX1 in chloroplast envelopes and Cr-FAX5 in ER membranes represent a basic set of FAX proteins to ensure shuttling of FAs from chloroplasts to the ER and are crucial for oil production in Chlamydomonas.

16.
BMC Plant Biol ; 11: 87, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21592396

RESUMEN

BACKGROUND: High-throughput technologies have opened new avenues to study biological processes and pathways. The interpretation of the immense amount of data sets generated nowadays needs to be facilitated in order to enable biologists to identify complex gene networks and functional pathways. To cope with this task multiple computer-based programs have been developed. GeneTrail is a freely available online tool that screens comparative transcriptomic data for differentially regulated functional categories and biological pathways extracted from common data bases like KEGG, Gene Ontology (GO), TRANSPATH and TRANSFAC. Additionally, GeneTrail offers a feature that allows screening of individually defined biological categories that are relevant for the respective research topic. RESULTS: We have set up GeneTrail for the use of Arabidopsis thaliana. To test the functionality of this tool for plant analysis, we generated transcriptome data of root and leaf responses to Fe deficiency and the Arabidopsis metal homeostasis mutant nas4x-1. We performed Gene Set Enrichment Analysis (GSEA) with eight meaningful pairwise comparisons of transcriptome data sets. We were able to uncover several functional pathways including metal homeostasis that were affected in our experimental situations. Representation of the differentially regulated functional categories in Venn diagrams uncovered regulatory networks at the level of whole functional pathways. Over-Representation Analysis (ORA) of differentially regulated genes identified in pairwise comparisons revealed specific functional plant physiological categories as major targets upon Fe deficiency and in nas4x-1. CONCLUSION: Here, we obtained supporting evidence, that the nas4x-1 mutant was defective in metal homeostasis. It was confirmed that nas4x-1 showed Fe deficiency in roots and signs of Fe deficiency and Fe sufficiency in leaves. Besides metal homeostasis, biotic stress, root carbohydrate, leaf photosystem and specific cell biological categories were discovered as main targets for regulated changes in response to--Fe and nas4x-1. Among 258 differentially expressed genes in response to--Fe and nas4x-1 five functional categories were enriched covering metal homeostasis, redox regulation, cell division and histone acetylation. We proved that GeneTrail offers a flexible and user-adapted way to identify functional categories in large-scale plant transcriptome data sets. The distinguished feature that allowed analysis of individually assembled functional categories facilitated the study of the Arabidopsis thaliana transcriptome.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Internet , Hierro/metabolismo , Programas Informáticos , Arabidopsis/fisiología , Metabolismo de los Hidratos de Carbono , Minería de Datos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/genética , Raíces de Plantas/genética , ARN de Planta/genética , Interfaz Usuario-Computador
17.
Front Plant Sci ; 10: 1264, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736987

RESUMEN

During evolution, chloroplasts, which originated by endosymbiosis of a prokaryotic ancestor of today's cyanobacteria with a eukaryotic host cell, were established as the site for photosynthesis. Therefore, chloroplast organelles are loaded with transition metals including iron, copper, and manganese, which are essential for photosynthetic electron transport due to their redox capacity. Although transport, storage, and cofactor-assembly of metal ions in chloroplasts are tightly controlled and crucial throughout plant growth and development, knowledge on the molecular nature of chloroplast metal-transport proteins is still fragmentary. Here, we characterized the soluble, ATP-binding ABC-transporter subunits ABCI10 and ABCI11 in Arabidopsis thaliana, which show similarities to components of prokaryotic, multisubunit ABC transporters. Both ABCI10 and ABCI11 proteins appear to be strongly attached to chloroplast-intrinsic membranes, most likely inner envelopes for ABCI10 and possibly plastoglobuli for ABCI11. Loss of ABCI10 and ABCI11 gene products in Arabidopsis leads to extremely dwarfed, albino plants showing impaired chloroplast biogenesis and deregulated metal homeostasis. Further, we identified the membrane-intrinsic protein ABCI12 as potential interaction partner for ABCI10 in the inner envelope. Our results suggest that ABCI12 inserts into the chloroplast inner envelope membrane most likely with five predicted α-helical transmembrane domains and represents the membrane-intrinsic subunit of a prokaryotic-type, energy-coupling factor (ECF) ABC-transporter complex. In bacteria, these multisubunit ECF importers are widely distributed for the uptake of nickel and cobalt metal ions as well as for import of vitamins and several other metabolites. Therefore, we propose that ABCI10 (as the ATPase A-subunit) and ABCI12 (as the membrane-intrinsic, energy-coupling T-subunit) are part of a novel, chloroplast envelope-localized, AAT energy-coupling module of a prokaryotic-type ECF transporter, most likely involved in metal ion uptake.

18.
Curr Opin Plant Biol ; 40: 138-146, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28985576

RESUMEN

In plants, de novo synthesis of fatty acids (FAs) occurs in plastids, whereas assembly and modification of acyl lipids is accomplished in the endoplasmic reticulum (ER) and plastids as well as in mitochondria. Subsequently, lipophilic compounds are distributed within the cell and delivered to their destination site. Thus, constant acyl-exchanges between subcellular compartments exist. These can occur via several modes of transport and plant membrane-intrinsic proteins for FA/lipid transfer have been shown to play an essential role in delivery and distribution. Lately, substantial progress has been made in identification and characterization of transport proteins for lipid compounds in plant organelle membranes. In this review, we focus on our current understanding of protein mediated lipid traffic between organelles of land plants.


Asunto(s)
Lípidos de la Membrana/metabolismo , Orgánulos/fisiología , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo
19.
Front Plant Sci ; 7: 178, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014281

RESUMEN

Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

20.
Trends Plant Sci ; 21(2): 145-158, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26616197

RESUMEN

Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.


Asunto(s)
Ácidos Grasos/metabolismo , Células Vegetales/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Orgánulos/metabolismo , Desarrollo de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA