Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 291(16): 8500-15, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26912656

RESUMEN

Plasma membrane vacuolar H(+)-ATPase (V-ATPase) activity of tumor cells is a major factor in control of cytoplasmic and extracellular pH and metastatic potential, but the isoforms involved and the factors governing plasma membrane recruitment remain uncertain. Here, we examined expression, distribution, and activity of V-ATPase isoforms in invasive prostate adenocarcinoma (PC-3) cells. Isoforms 1 and 3 were the most highly expressed forms of membrane subunit a, with a1 and a3 the dominant plasma membrane isoforms. Correlation between plasma membrane V-ATPase activity and invasiveness was limited, but RNAi knockdown of either a isoform did slow cell proliferation and inhibit invasion in vitro Isoform a1 was recruited to the cell surface from the early endosome-recycling complex pathway, its knockdown arresting transferrin receptor recycling. Isoform a3 was associated with the late endosomal/lysosomal compartment. Both a isoforms associated with accessory protein Ac45, knockdown of which stalled transit of a1 and transferrin-transferrin receptor, decreased proton efflux, and reduced cell growth and invasiveness; this latter effect was at least partly due to decreased delivery of the membrane-bound matrix metalloproteinase MMP-14 to the plasma membrane. These data indicate that in prostatic carcinoma cells, a1 and a3 isoform populations predominate in different compartments where they maintain different luminal pH. Ac45 plays a central role in navigating the V-ATPase to the plasma membrane, and hence it is an important factor in expression of the invasive phenotype.


Asunto(s)
Membrana Celular/enzimología , Endosomas/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Línea Celular Tumoral , Membrana Celular/genética , Endosomas/genética , Humanos , Concentración de Iones de Hidrógeno , Isoenzimas/genética , Isoenzimas/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
2.
J Biol Chem ; 289(23): 16399-408, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24795045

RESUMEN

The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.


Asunto(s)
Albúminas/metabolismo , Insecticidas/metabolismo , Pisum sativum/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Albúminas/antagonistas & inhibidores , Secuencia de Bases , Benzofenonas/metabolismo , Sitios de Unión , Biotina/metabolismo , Cartilla de ADN , Insecticidas/química , Microscopía Electrónica , Etiquetas de Fotoafinidad , Unión Proteica , ATPasas de Translocación de Protón Vacuolares/química
3.
Mol Membr Biol ; 27(4-6): 147-59, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20446876

RESUMEN

To operate as a rotary motor, the ATP-hydrolyzing domain of the vacuolar H(+)-ATPase must be connected to a fixed structure in its membrane-bound proton pump domain by a mechanical stator. Although low-resolution structural data and spectroscopic analysis indicate that a filament-like subunit E/subunit G heterodimer performs this role, more detailed information about the relative arrangement of these subunits is limited. We have used a site-directed cross-linking approach to show that, in both bacterial and yeast V-type ATPases, the N-terminal alpha-helical segments of the G and E subunits are closely aligned over a distance of up to 40 A. Furthermore, cross-linking coupled to mass spectrometry shows that the C-terminal end of G is anchored at the C-terminal globular domain of subunit E. These data are consistent with a stator model comprising two approximately 150 A long parallel alpha-helices linked to each other at both ends, stabilized by a coiled-coil arrangement and capped by the globular C-terminal domain of E that connects the cytoplasmic end of the helical structure to the V-ATPase catalytic domain.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Reactivos de Enlaces Cruzados/química , Disulfuros/química , Enterococcus/enzimología , Enterococcus/genética , Immunoblotting , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
J Leukoc Biol ; 73(1): 165-71, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12525574

RESUMEN

The proteolytic activities frequently associated with sources of allergens and parasite secretions have been suggested as important immunomodulators. We have investigated whether the protease activity of the house dust mite allergen Der p1 and the secreted proteases of the hookworm Necator americanus are able to directly induce type 2 cytokine production by basophils. Der p1 and the secretions of N. americanus induced interleukin (IL)-4, IL-5, and IL-13 but not interferon-gamma mRNA in KU812 basophils. Enzyme-linked immunosorbent assay confirmed that IL-4 and IL-13 were secreted. A nonproteolytic antigen failed to induce cytokine expression, and preincubation of Der p1 or N. americanus secretions with protease inhibitors inhibited cytokine expression. Data were confirmed using basophils purified from human peripheral blood. We speculate that this innate mechanism may contribute to the development of a cytokine milieu that could promote immunoglobulin E synthesis, eosinophil recruitment, and the development of type 2 T cells.


Asunto(s)
Basófilos/inmunología , Citocinas/biosíntesis , Endopeptidasas/inmunología , Helmintos/enzimología , Pyroglyphidae/enzimología , Animales , Antígenos Dermatofagoides/inmunología , Antígenos Dermatofagoides/farmacología , Proteínas de Artrópodos , Basófilos/metabolismo , Cisteína Endopeptidasas , Citocinas/efectos de los fármacos , Endopeptidasas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Helmintos/inmunología , Humanos , Interferón gamma , Interleucina-13/biosíntesis , Interleucina-13/metabolismo , Interleucina-4/biosíntesis , Interleucina-4/metabolismo , Interleucina-5/biosíntesis , Necator americanus/enzimología , Necator americanus/inmunología , Pyroglyphidae/inmunología , Células Th2/inmunología
5.
Structure ; 23(3): 461-471, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25661654

RESUMEN

Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.


Asunto(s)
Proteínas de Insectos/química , Manduca/enzimología , ATPasas de Translocación de Protón Vacuolares/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Secuencia Conservada , Microscopía por Crioelectrón , Análisis de Fourier , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
6.
J Mol Biol ; 426(2): 286-300, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24075871

RESUMEN

The vacuolar H(+)-ATPase (V-ATPase) is an ATP-driven proton pump essential to the function of eukaryotic cells. Its cytoplasmic V1 domain is an ATPase, normally coupled to membrane-bound proton pump Vo via a rotary mechanism. How these asymmetric motors are coupled remains poorly understood. Low energy status can trigger release of V1 from the membrane and curtail ATP hydrolysis. To investigate the molecular basis for these processes, we have carried out cryo-electron microscopy three-dimensional reconstruction of deactivated V1 from Manduca sexta. In the resulting model, three peripheral stalks that are parts of the mechanical stator of the V-ATPase are clearly resolved as unsupported filaments in the same conformations as in the holoenzyme. They are likely therefore to have inherent stiffness consistent with a role as flexible rods in buffering elastic power transmission between the domains of the V-ATPase. Inactivated V1 adopted a homogeneous resting state with one open active site adjacent to the stator filament normally linked to the H subunit. Although present at 1:1 stoichiometry with V1, both recombinant subunit C reconstituted with V1 and its endogenous subunit H were poorly resolved in three-dimensional reconstructions, suggesting structural heterogeneity in the region at the base of V1 that could indicate positional variability. If the position of H can vary, existing mechanistic models of deactivation in which it binds to and locks the axle of the V-ATPase rotary motor would need to be re-evaluated.


Asunto(s)
Proteínas de Insectos/metabolismo , Proteínas de Insectos/ultraestructura , Manduca/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/ultraestructura , Animales , Microscopía por Crioelectrón , Imagenología Tridimensional , Modelos Moleculares , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
7.
J Mol Biol ; 386(4): 989-99, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19244615

RESUMEN

The vacuolar H+-ATPase (V-ATPase) is an ATP-driven rotary molecular motor that is a transmembrane proton pump in all eukaryotic cells. Although its activity is fundamental to many physiological processes, our understanding of the structure and mechanism of the V-ATPase is poor. Using cryo-electron microscopy of the tobacco hornworm (Manduca sexta) enzyme, we have calculated the first 3D reconstruction of the intact pump in its native state. The resolution of 16.5 A is significantly higher than that of previous cryo-electron microscopy models of either V-ATPase or the related F1F0-ATPase. A network of four stalk structures connecting the V1 catalytic domain and the V0 membrane domain is now fully resolved, demonstrating substantially greater complexity than that found in the F-ATPase. Three peripheral stator stalks connect these domains to a horizontal collar that partly encircles the region between V1 and V0. The fourth stalk is a central axle that connects to V0 but makes minimal contact with V1. Several subunit crystal structures can be fit accurately into the reconstruction. The model thus provides new insights into the organisation of key components involved in mechanical coupling between the domains and regulation of activity.


Asunto(s)
Microscopía por Crioelectrón , Manduca/enzimología , Proteínas Motoras Moleculares/ultraestructura , ATPasas de Translocación de Protón Vacuolares/ultraestructura , Animales , Dominio Catalítico , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Proteínas Motoras Moleculares/aislamiento & purificación , Subunidades de Proteína/química , ATPasas de Translocación de Protón Vacuolares/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA