Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105537, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072042

RESUMEN

The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component. We used cryo-electron microscopy to reveal unique features, such as an unconventional protein belt (DR_1364) around the main secretin (GspD), and a cap (DR_0940) found to be a separated subunit rather than integrated with GspD. Furthermore, a novel region at the N-terminus of the GspD constitutes an additional second gate, supplementing the one typically found in the outer membrane region. This T2SS was found to contribute to envelope integrity, while also playing a role in nucleic acid and nutrient trafficking. Studies on intact cell envelopes show a consistent T2SS structure repetition, highlighting its significance within the cellular framework.


Asunto(s)
Membrana Celular , Deinococcus , Extremófilos , Sistemas de Secreción Tipo II , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Deinococcus/metabolismo , Extremófilos/metabolismo , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/metabolismo , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 119(45): e2209111119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322746

RESUMEN

Surface layers (S-layers) are highly ordered coats of proteins localized on the cell surface of many bacterial species. In these structures, one or more proteins form elementary units that self-assemble into a crystalline monolayer tiling the entire cell surface. Here, the cell envelope of the radiation-resistant bacterium Deinococcus radiodurans was studied by cryo-electron microscopy, finding the crystalline regularity of the S-layer extended into the layers below (outer membrane, periplasm, and inner membrane). The cell envelope appears to be highly packed and resulting from a three-dimensional crystalline distribution of protein complexes organized in close continuity yet allowing a certain degree of free space. The presented results suggest how S-layers, at least in some species, are mesoscale assemblies behaving as structural and functional scaffolds essential for the entire cell envelope.


Asunto(s)
Deinococcus , Deinococcus/metabolismo , Microscopía por Crioelectrón , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Membrana Celular/metabolismo
3.
J Biol Chem ; 299(1): 102784, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502921

RESUMEN

Deinococcus radiodurans is known for its remarkable ability to withstand harsh stressful conditions. The outermost layer of its cell envelope is a proteinaceous coat, the S-layer, essential for resistance to and interactions with the environment. The S-layer Deinoxanthin-binding complex (SDBC), one of the main units of the characteristic multilayered cell envelope of this bacterium, protects against environmental stressors and allows exchanges with the environment. So far, specific regions of this complex, the collar and the stalk, remained unassigned. Here, these regions are resolved by cryo-EM and locally refined. The resulting 3D map shows that the collar region of this multiprotein complex is a trimer of the protein DR_0644, a Cu-only superoxide dismutase (SOD) identified here to be efficient in quenching reactive oxygen species. The same data also showed that the stalk region consists of a coiled coil that extends into the cell envelope for ∼280 Å, reaching the inner membrane. Finally, the orientation and localization of the complex are defined by in situ cryo-electron crystallography. The structural organization of the SDBC couples fundamental UV antenna properties with the presence of a Cu-only SOD, showing here coexisting photoprotective and chemoprotective functions. These features suggests how the SDBC and similar protein complexes, might have played a primary role as evolutive templates for the origin of photoautotrophic processes by combining primary protective needs with more independent energetic strategies.


Asunto(s)
Deinococcus , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Deinococcus/química , Deinococcus/citología , Deinococcus/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
4.
Plant Physiol ; 192(4): 2656-2671, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37202365

RESUMEN

In thylakoid membranes, photosystem II (PSII) monomers from the stromal lamellae contain the subunits PsbS and Psb27 (PSIIm-S/27), while PSII monomers (PSIIm) from granal regions lack these subunits. Here, we have isolated and characterized these 2 types of PSII complexes in tobacco (Nicotiana tabacum). PSIIm-S/27 showed enhanced fluorescence, the near absence of oxygen evolution, and limited and slow electron transfer from QA to QB compared to the near-normal activities in the granal PSIIm. However, when bicarbonate was added to PSIIm-S/27, water splitting and QA to QB electron transfer rates were comparable to those in granal PSIIm. The findings suggest that the binding of PsbS and/or Psb27 inhibits forward electron transfer and lowers the binding affinity for bicarbonate. This can be rationalized in terms of the recently discovered photoprotection role played by bicarbonate binding via the redox tuning of the QA/QA•- couple, which controls the charge recombination route, and this limits chlorophyll triplet-mediated 1O2 formation. These findings suggest that PSIIm-S/27 is an intermediate in the assembly of PSII in which PsbS and/or Psb27 restrict PSII activity while in transit using a bicarbonate-mediated switch and protective mechanism.


Asunto(s)
Bicarbonatos , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Bicarbonatos/metabolismo , Tilacoides/metabolismo , Transporte de Electrón , Oxidación-Reducción
5.
Can J Microbiol ; 70(5): 190-198, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525892

RESUMEN

The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.


Asunto(s)
Membrana Celular , Deinococcus , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Membrana Celular/química , Pared Celular/química , Pared Celular/metabolismo , Deinococcus/metabolismo , Deinococcus/química
6.
J Biol Chem ; 298(6): 102031, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35577074

RESUMEN

The radiation-resistant bacterium Deinococcus radiodurans is known as the world's toughest bacterium. The S-layer of D. radiodurans, consisting of several proteins on the surface of the cellular envelope and intimately associated with the outer membrane, has therefore been useful as a model for structural and functional studies. Its main proteinaceous unit, the S-layer deinoxanthin-binding complex (SDBC), is a hetero-oligomeric assembly known to contribute to the resistance against environmental stress and have porin functional features; however, its precise structure is unknown. Here, we resolved the structure of the SDBC at ∼2.5 Å resolution by cryo-EM and assigned the sequence of its main subunit, the protein DR_2577. This structure is characterized by a pore region, a massive ß-barrel organization, a stalk region consisting of a trimeric coiled coil, and a collar region at the base of the stalk. We show that each monomer binds three Cu ions and one Fe ion and retains one deinoxanthin molecule and two phosphoglycolipids, all exclusive to D. radiodurans. Finally, electrophysiological characterization of the SDBC shows that it exhibits transport properties with several amino acids. Taken together, these results highlight the SDBC as a robust structure displaying both protection and sieving functions that facilitates exchanges with the environment.


Asunto(s)
Proteínas Bacterianas , Carotenoides , Deinococcus , Complejos Multiproteicos , Proteínas Bacterianas/química , Carotenoides/química , Microscopía por Crioelectrón , Deinococcus/química , Complejos Multiproteicos/química
7.
J Bioenerg Biomembr ; 54(5-6): 273-281, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36229623

RESUMEN

Salinibacter ruber is an extremophilic bacterium able to grow in high-salts environments, such as saltern crystallizer ponds. This halophilic bacterium is red-pigmented due to the production of several carotenoids and their derivatives. Two of these pigment molecules, salinixanthin and retinal, are reported to be essential cofactors of the xanthorhodopsin, a light-driven proton pump unique to this bacterium. Here, we isolate and characterize an outer membrane porin-like protein that retains salinixanthin. The characterization by mass spectrometry identified an unknown protein whose structure, predicted by AlphaFold, consists of a 8 strands beta-barrel transmembrane organization typical of porins. The protein is found to be part of a functional network clearly involved in the outer membrane trafficking. Cryo-EM micrographs showed the shape and dimensions of a particle comparable with the ones of the predicted structure. Functional implications, with respect to the high representativity of this protein in the outer membrane fraction, are discussed considering its possible role in primary functions such as the nutrients uptake and the homeostatic balance. Finally, also a possible involvement in balancing the charge perturbation associated with the xanthorhodopsin and ATP synthase activities is considered.


Asunto(s)
Bacteroidetes , Porinas , Porinas/metabolismo , Bacteroidetes/química , Bacteroidetes/metabolismo , Carotenoides/química , Carotenoides/metabolismo
8.
J Biol Chem ; 295(13): 4224-4236, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32071085

RESUMEN

In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-ß-d-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus/química , Glicoproteínas de Membrana/química , Complejos Multiproteicos/química , Proteínas Bacterianas/genética , Carotenoides/química , Membrana Celular/química , Pared Celular/química , Deinococcus/genética , Complejos Multiproteicos/genética , Porinas/química , Unión Proteica/genética
9.
Proc Natl Acad Sci U S A ; 120(51): e2311568120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085786
10.
Photochem Photobiol Sci ; 19(4): 495-503, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32236233

RESUMEN

The keto-carotenoid deinoxanthin, which occurs in the UV-resistant bacterium Deinococcus radiodurans, has been investigated by ultrafast time-resolved spectroscopy techniques. We have explored the excited-state properties of deinoxanthin in solution and bound to the S-layer Deinoxanthin Binding Complex (SDBC), a protein complex important for UV resistance and thermostability of the organism. Binding of deinoxanthin to SDBC shifts the absorption spectrum to longer wavelengths, but excited-state dynamics remain unaffected. The lifetime of the lowest excited state (S1) of isolated deinoxanthin in methanol is 2.1 ps. When bound to SDBC, the S1 lifetime is 2.4 ps, indicating essentially no alteration of the effective conjugation length upon binding. Moreover, our data show that the conformational disorder in both ground and excited states is the same for deinoxanthin in methanol and bound to SDBC. Our results thus suggest a rather loosely bound carotenoid in SDBC, making it very distinct from other carotenoid-binding proteins such as Orange Carotenoid Protein (OCP) or crustacyanin, both of which significantly restrain the carotenoid at the binding site. Three deinoxanthin analogs were found to bind the SDBC, suggesting a non-selective binding site of deinoxanthin in SDBC.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Deinococcus/química , Proteínas Bacterianas/química , Sitios de Unión , Carotenoides/química , Deinococcus/metabolismo , Estructura Molecular , Procesos Fotoquímicos
11.
Ecotoxicol Environ Saf ; 189: 110018, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31812823

RESUMEN

Understanding how environmental pollutants influence plant occurrence, growth, and development is key for effective management plans and potential bioremediation. Rare plants, such as orchids, may occur in modified habitats and on soils containing heavy metals, yet their ecological and physiological responses to heavy metals is poorly understood. We investigated the influence of heavy metal pollution on orchid growth rates and interactions with soil fungal mutualists by comparing a large population of the orchid Epipactis helleborine (L.) Crantz subsp. tremolsii (Pau) E. Klein that grows on mine tailings in south-west Sardinia (Italy) with a population that grows on non-contaminated soils in central Sardinia. Soils of the contaminated site had high levels of heavy metals and low organic matter and nutritive elements content. We performed a morphological analysis on twenty individuals that have been subjected to measurement of bioaccumulation and translocation of heavy metals. Fungi associated with the roots of plants from the contaminated and uncontaminated site were grown and identified by DNA barcoding approach. Plants from the contaminated site were smaller than the ones growing in the uncontaminated site and were found to be able to tolerate heavy metals from the soil and to accumulate and translocate them into their organs. Fungi belonging to the genus Ilyonectria (Ascomycota) were found both in contaminated and uncontaminated sites, while an unidentified fungus was isolated from roots in the contaminated site only. These results are discussed in terms of orchids' tolerance to heavy metals and its physiological and ecological mechanisms. The role of contaminated habitats in harbouring orchids and peculiar taxa is also discussed.


Asunto(s)
Metales Pesados/metabolismo , Orchidaceae/metabolismo , Contaminantes del Suelo/metabolismo , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Biodegradación Ambiental , Islas , Italia , Metales Pesados/análisis , Minería , Orchidaceae/crecimiento & desarrollo , Orchidaceae/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Suelo/química , Contaminantes del Suelo/análisis
12.
Biochim Biophys Acta Biomembr ; 1860(8): 1554-1562, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29803693

RESUMEN

We have isolated and analysed the cell envelope of the thermophilic bacterium Thermus thermophilus HB8. Isolated cell walls, characterized by the dominance of the S-layer protein SlpA, are found to be constituted by several protein complexes of high molecular weights. Further isolation steps, starting from the cell wall samples, led to the selective release of the S-layer protein SlpA in solution as confirmed by mass spectrometry. Blue Native gel electrophoresis on these samples showed that SlpA is organized into a specific hierarchical order of oligomeric states that are consistent with the complexes at high molecular weight identified on the total cell wall fraction. The analysis showed that SlpA bases this peculiar organization on monomers and exceptionally stable dimers, leading to the formation of tetramers, heptamers, and decamers. Furthermore, the two elementary units of SlpA, monomers and dimers, are regulated by the presence of calcium not only for the assembling of monomers into dimers, but also for the splitting of dimers into monomers. Finally, the SlpA protein was found to be subjected to specific proteolysis leading to characteristic degradation products. Findings are discussed in terms of S-layer assembling properties as bases for understanding its structure, turn-over and organization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Thermus thermophilus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Calcio/química , Calcio/metabolismo , Pared Celular/metabolismo , Dimerización , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas
13.
Photochem Photobiol Sci ; 17(1): 81-88, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29218340

RESUMEN

Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses. Recently, we have described a novel complex composed of the surface (S)-layer protein DR_2577 and the carotenoid deinoxanthin. We also showed a role of this complex in the UV resistance under desiccation. Both these properties, UV and desiccation resistance, suggest a selective pressure generated by Sun irradiation. In order to confirm this hypothesis we checked whether this S-layer Deinoxanthin Binding Complex (SDBC) has features of thermo-resistance, a property also expected in proteins evolved under solar irradiative pressure. We performed the spectroscopic characterization of the SDBC by means of thermal shift assay, circular dichroism and related in silico analysis. Our findings identify a stability typical of thermo-adapted proteins and provide a new insight into the origin of specific S-layer types. The results are discussed in terms of co-evolutionary mechanisms related to Sun-induced desiccation and heat.

14.
Plant Mol Biol ; 94(1-2): 125-136, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28283921

RESUMEN

The 2-methylene-furan-3-one reductase or Fragaria x ananassa Enone Oxidoreductase (FaEO) catalyses the last reductive step in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a major component in the characteristic flavour of strawberries. In the present work, we describe the association between FaEO and the vacuolar membrane of strawberry fruits. Even if FaEO lacks epitopes for stable or transient membrane-interactions, it contains a calmodulin-binding region, suggesting that in vivo FaEO may be associated with the membrane via a peripheral protein complex with calmodulin. Moreover, we also found that FaEO occurs in dimeric form in vivo and, as frequently observed for calmodulin-regulated proteins, it may be expressed in different isoforms by alternative gene splicing. Further mass spectrometry analysis confirmed that the isolated FaEO consists in the already known isoform and that it is the most characteristic during ripening. Finally, a characterization by absorption spectroscopy showed that FaEO has specific flavoprotein features. The relevance of these findings and their possible physiological implications are discussed.


Asunto(s)
Fragaria/enzimología , Fragaria/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Empalme Alternativo/fisiología , Secuencia de Bases , ADN de Plantas/genética , Frutas/enzimología , Frutas/metabolismo , Redes y Vías Metabólicas/fisiología , Modelos Moleculares , Oxidorreductasas/genética , Proteínas de Plantas/genética , Conformación Proteica , Isoformas de Proteínas
15.
Electrophoresis ; 38(3-4): 441-446, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27794166

RESUMEN

We report a fast and sensitive procedure for blue native PAGE staining, in which the conventional staining step with CBB is avoided. After running, a short exposure to a mix of polar protic solvents (ethanol and acetic acid) leads to a fast and selective removal of the dye from the migration front and a specific binding to the protein bands, while the rest undergo a selective and complete background removal, leading to an intense contrast. This single-step staining-destaining technique is useful in protein samples that bind colored cofactors such as photosystems, which can be selectively discerned by their characteristic green color. After the staining of such samples, the green color persists, while the other unpigmented protein complexes and the molecular standard remain CBB stained, creating a useful reference system for the assignment of the bands. The advantages and chemical basis of this staining procedure are discussed.


Asunto(s)
Electroforesis en Gel de Poliacrilamida Nativa/métodos , Proteínas del Complejo del Centro de Reacción Fotosintética/análisis , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Colorantes de Rosanilina/química , Coloración y Etiquetado/métodos , Tilacoides/química , Nicotiana/química , Nicotiana/citología
16.
J Exp Bot ; 67(11): 3303-12, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27083698

RESUMEN

Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis.


Asunto(s)
Expresión Génica , Proteínas de Plantas/genética , Rosa/enzimología , Rosa/genética , Vacuolas/metabolismo , beta-Fructofuranosidasa/genética , Cromatografía en Gel , Flores/enzimología , Flores/genética , Flores/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rosa/metabolismo , beta-Fructofuranosidasa/aislamiento & purificación , beta-Fructofuranosidasa/metabolismo
17.
Biochim Biophys Acta ; 1838(7): 1978-84, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24589688

RESUMEN

We have analyzed the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Unexpectedly, the bacterial envelope appears to be organized in different complexes of high molecular weight. Each complex is composed of several proteins, most of which are coded by genes of unknown function and the majority are constituents of the inner/outer membrane system. One of the most abundant complexes is constituted by the gene DR_0774. This protein is a type of secretin which is a known subunit of the homo-oligomeric channel that represents the main bulk of the type IV piliation family. Finally, a minor component of the pink envelope consists of several inner-membrane proteins. The implications of these findings are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Pared Celular/genética , Pared Celular/metabolismo , Deinococcus/genética , Proteínas de la Membrana/genética , Secretina/genética , Secretina/metabolismo
18.
Plant Sci ; 345: 112113, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729437

RESUMEN

Given their critical role in plant reproduction and survival, seeds demand meticulous regulatory mechanisms to effectively store and mobilize reserves. Within seeds, the condition of storage reserves heavily depends on environmental stimuli and hormonal activation. Unlike non-protein reserves that commonly employ dedicated regulatory proteins for signaling, proteinaceous reserves may show a unique form of 'self-regulation', amplifying efficiency and precision in this process. Proteins rely on stability to carry out their functions. However, in specific physiological contexts, particularly in seed germination, protein instability becomes essential, fulfilling roles from signaling to regulation. In this study, the elongation factor 1-alpha has been identified as a main proteinaceous reserve in Nicotiana tabacum L. seeds and showed peculiar changes in stability based on tested chemical and physical conditions. A detailed biochemical analysis followed these steps to enhance our understanding of these protein attributes. The protein varied its behavior under different conditions of pH, temperature, and salt concentration, exhibiting shifts within physiological ranges. Notably, distinct solubility transitions were observed, with the elongation factor 1-alpha becoming insoluble upon reaching specific thresholds determined by the tested chemical and physical conditions. The findings are discussed within the context of seed signaling in response to environmental conditions during the key transitions of dormancy and germination.


Asunto(s)
Nicotiana , Semillas , Nicotiana/metabolismo , Nicotiana/fisiología , Semillas/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Factor 1 de Elongación Peptídica/genética , Proteínas de Plantas/metabolismo , Germinación/fisiología , Concentración de Iones de Hidrógeno , Temperatura
19.
Photosynth Res ; 118(3): 199-207, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23975205

RESUMEN

Photosystem II has been purified from a transplastomic strain of Nicotiana tabacum according to two different protocols. Using the procedure described in Piano et al. (Photosynth Res 106:221-226, 2010) it was possible to isolate highly active PSII composed of monomers and dimers but depleted in their PsbS protein content. A "milder" procedure than the protocol reported by Fey et al. (Biochim Biophys Acta 1777:1501-1509, 2008) led to almost exclusively monomeric PSII complexes which in part still bind the PsbS protein. This finding might support a role for PSII monomers in higher plants.


Asunto(s)
Complejos de Proteína Captadores de Luz/aislamiento & purificación , Nicotiana/fisiología , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/aislamiento & purificación , Clorofila/metabolismo , Electroforesis en Gel de Poliacrilamida , Complejos de Proteína Captadores de Luz/metabolismo , Espectrometría de Masas , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Subunidades de Proteína , Tilacoides/metabolismo , Nicotiana/metabolismo
20.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 10): 902-6, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21931222

RESUMEN

Over the last 20 years cryocrystallography has revolutionized the field of macromolecular crystallography, greatly reducing radiation damage and allowing the collection of complete data sets at synchrotron sources. However, in order to cool crystals to 100 K cryoprotective agents must usually be added to prevent the formation of crystalline ice, which disrupts the macromolecular crystal lattice and often results in a degradation of diffraction quality. This process can involve the extensive testing of solution compositions and soaking protocols to find suitable conditions that maintain diffraction quality. In this study, it is demonstrated that when some crystals of macromolecules are mounted in the complete absence of surrounding liquid no crystalline ice is formed and the diffraction resolution, merging R factors and mosaic spread values are comparable to those of crystals cryocooled in the presence of a cryoprotectant. This potentially removes one of the most onerous manual steps in the structure-solution pipeline and could alleviate some of the foreseen difficulties in the automation of crystal mounting.


Asunto(s)
Crioprotectores/química , Cristalografía/métodos , Proteínas/química , Sustancias Macromoleculares/química , Fosfoglicerato Quinasa/química , Fosfotransferasas (Fosfomutasas)/química , Tripsina/química , Proteína de Unión al GTP rhoA/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA