RESUMEN
The pediatric use of pneumatic ventricular assist devices (VADs) as a bridge to heart transplant still suffers for short-term major complications such as bleeding and thromboembolism. Although numerical techniques are increasingly exploited to support the process of device optimization, an effective virtual benchmark is still lacking. Focusing on the 12 cc Penn State pneumatic VAD, we developed a novel fluid-structure interaction (FSI) model able to capture the device functioning, reproducing the mechanical interplay between the diaphragm, the blood chamber, and the pneumatic actuation. The FSI model included the diaphragm mechanical response from uniaxial tensile tests, realistic VAD pressure operative conditions from a dedicated mock loop system, and the behavior of VAD valves. Our FSI-based benchmark effectively captured the complexity of the diaphragm dynamics. During diastole, the initial slow diaphragm retraction in the air chamber was followed by a more rapid phase; asymmetries were noticed in the diaphragm configuration during its systolic inflation in the blood chamber. The FSI model also captured the major features of the device fluid dynamics. In particular, during diastole, a rotational wall washing pattern is promoted by the penetrating inlet jet with a low-velocity region located in the center of the device. Our numerical analysis of the 12 cc Penn State VAD points out the potential of the proposed FSI approach well resembling previous experimental evidences; if further tested and validated, it could be exploited as a virtual benchmark to deepen VAD-related complications and to support the ongoing optimization of pediatric devices.
Asunto(s)
Corazón Auxiliar , Benchmarking , Fenómenos Mecánicos , Modelos Cardiovasculares , Interfaz Usuario-ComputadorRESUMEN
Hemodynamics play a central role in the health and disease of the coronary and peripheral vascular systems. Vessel-lining endothelial cells are known mechanosensors, responding to disturbances in flow - with mechanosensitivity hypothesized to change in response to metabolic demands. The health of our smallest microvessels have been lauded as a prognostic marker for cardiovascular health. Yet, despite numerous animal models, studying these small vessels has proved difficult. Microfluidic technologies have allowed a number of 3D vascular models to be developed and used to investigate human vessels. Here, two such systems are employed for examining 1) interstitial flow effects on neo-vessel formation, and 2) the effects of flow-conditioning on vascular remodeling following sustained static culture. Interstitial flow is shown to enhance early vessel formation via significant remodeling of vessels and interconnected tight junctions of the endothelium. In formed vessels, continuous flow maintains a stable vascular diameter and causes significant remodeling, contrasting the continued anti-angiogenic decline of statically cultured vessels. This study is the first to couple complex 3D computational flow distributions and microvessel remodeling from microvessels grown on-chip (exposed to flow or no-flow conditions). Flow-conditioned vessels (WSS < 1Pa for 30 µm vessels) increase endothelial barrier function, result in significant changes in gene expression and reduce reactive oxygen species and anti-angiogenic cytokines. Taken together, these results demonstrate microvessel mechanosensitivity to flow-conditioning, which limits deleterious vessel regression in vitro, and could have implications for future modeling of reperfusion/no-flow conditions.
Asunto(s)
Capilares , Células Endoteliales , Animales , Hemodinámica , Humanos , Microfluídica , MicrovasosRESUMEN
The current management of aortic dilatation associated with congenital bicuspid aortic valve (bicuspid aortic valve aortopathy) is based on dimensional parameters (diameter of the aneurysm, growth of the diameter over time) and few other criteria. The disease is however heterogeneous in terms of natural and clinical history and risk of acute complications, ie aortic dissection. Dimensional criteria are now admitted to have limited value as predictors of such complications. Thus, novel principles for risk stratification have been recently investigated, including phenotypic criteria, flow-related metrics, and circulating biomarkers. A systematization of the typical anatomoclinical forms that the aortopathy can assume has led to the identification of the more severe root phenotype, associated with higher risk of progression of the aneurysm and possible higher aortic dissection risk. Four-dimensional-flow magnetic resonance imaging studies are searching for potentially clinically significant metrics of flow derangement, based on the recognized association of local abnormal shear stress with wall pathology. Other research initiatives are addressing the question whether circulating molecules could predict the presence or, more importantly, the future development of aortopathy. The present review summarizes the latest progresses in the knowledge on risk stratification of bicuspid aortic valve aortopathy, focusing on critical aspects and debated points.
Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/patología , Humanos , Medición de RiesgoRESUMEN
Congenital bicuspid aortic valve (BAV) consists of two fused cusps and represents a major risk factor for calcific valvular stenosis. Herein, a fully coupled fluid-structure interaction (FSI) BAV model was developed from patient-specific magnetic resonance imaging (MRI) and compared against in vivo 4-dimensional flow MRI (4D Flow). FSI simulation compared well with 4D Flow, confirming direction and magnitude of the flow jet impinging onto the aortic wall as well as location and extension of secondary flows and vortices developing at systole: the systolic flow jet originating from an elliptical 1.6 cm2 orifice reached a peak velocity of 252.2 cm/s, 0.6% lower than 4D Flow, progressively impinging on the ascending aorta convexity. The FSI model predicted a peak flow rate of 22.4 L/min, 6.7% higher than 4D Flow, and provided BAV leaflets mechanical and flow-induced shear stresses, not directly attainable from MRI. At systole, the ventricular side of the non-fused leaflet revealed the highest wall shear stress (WSS) average magnitude, up to 14.6 Pa along the free margin, with WSS progressively decreasing towards the belly. During diastole, the aortic side of the fused leaflet exhibited the highest diastolic maximum principal stress, up to 322 kPa within the attachment region. Systematic comparison with ground-truth non-invasive MRI can improve the computational model ability to reproduce native BAV hemodynamics and biomechanical response more realistically, and shed light on their role in BAV patients' risk for developing complications; this approach may further contribute to the validation of advanced FSI simulations designed to assess BAV biomechanics.
Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide/diagnóstico por imagen , Enfermedad de la Válvula Aórtica Bicúspide/fisiopatología , Adulto , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Fenómenos Biomecánicos , Femenino , Hemodinámica , Humanos , Imagen por Resonancia Magnética , Modelación Específica para el Paciente , Estrés MecánicoRESUMEN
PURPOSE: We exploited 4-dimensional flow magnetic resonance imaging (4D Flow), combined with a standardized in vitro setting, to establish a comprehensive benchmark for the systematic hemodynamic comparison of surgical aortic bioprosthetic valves (BPVs). MATERIALS AND METHODS: 4D Flow analysis was performed on two small sizes of three commercialized pericardial BPVs (Trifecta™ GT, Carpentier-Edwards PERIMOUNT Magna and Crown PRT®). Each BPV was tested over a clinically pertinent range of continuous flow rates within an in vitro MRI-compatible system, equipped with pressure transducers. In-house 4D Flow post-processing of the post-valvular velocity field included the quantification of BPV effective orifice area (EOA), transvalvular pressure gradients (TPG), kinetic energy and viscous energy dissipation. RESULTS: The 4D Flow technique effectively captured the 3-dimensional flow pattern of each device. Trifecta exhibited the lowest range of velocity and kinetic energy, maximized EOA (p < 0.0001) and minimized TPGs (p ≤ 0.015) if compared with Magna and Crown, these reporting minor EOA difference s (p ≥ 0.042) and similar TPGs (p ≥ 0.25). 4D Flow TPGs estimations strongly correlated against ground-truth data from pressure transducers; viscous energy dissipation proved to be inversely proportional to the fluid jet penetration. CONCLUSION: The proposed 4D Flow analysis pinpointed consistent hemodynamic differences among BPVs, highlighting the not negligible effect of device size on the fluidynamic outcomes. The efficacy of non-invasive 4D Flow MRI protocol could shed light on how standardize the comparison among devices in relation to their actual hemodynamic performances and improve current criteria for their selection.
Asunto(s)
Estenosis de la Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/diagnóstico por imagen , Benchmarking , Bioprótesis/normas , Prótesis Valvulares Cardíacas/normas , Imagen por Resonancia Magnética , Diseño de Prótesis/normas , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Hemodinámica , Humanos , Imagenología Tridimensional , Técnicas In Vitro , CinéticaRESUMEN
Severity of aortic coarctation (CoA) is currently assessed by estimating trans-coarctation pressure drops through cardiac catheterization or echocardiography. In principle, more detailed information could be obtained non-invasively based on space- and time-resolved magnetic resonance imaging (4D flow) data. Yet the limitations of this imaging technique require testing the accuracy of 4D flow-derived hemodynamic quantities against other methodologies. With the objective of assessing the feasibility and accuracy of this non-invasive method to support the clinical diagnosis of CoA, we developed an algorithm (4DF-FEPPE) to obtain relative pressure distributions from 4D flow data by solving the Poisson pressure equation. 4DF-FEPPE was tested against results from a patient-specific fluid-structure interaction (FSI) simulation, whose patient-specific boundary conditions were prescribed based on 4D flow data. Since numerical simulations provide noise-free pressure fields on fine spatial and temporal scales, our analysis allowed to assess the uncertainties related to 4D flow noise and limited resolution. 4DF-FEPPE and FSI results were compared on a series of cross-sections along the aorta. Bland-Altman analysis revealed very good agreement between the two methodologies in terms of instantaneous data at peak systole, end-diastole and time-averaged values: biases (means of differences) were +0.4â¯mmHg, -1.1â¯mmHg and +0.6â¯mmHg, respectively. Limits of agreement (2 SD) were ±0.978â¯mmHg, ±1.06â¯mmHg and ±1.97â¯mmHg, respectively. Peak-to-peak and maximum trans-coarctation pressure drops obtained with 4DF-FEPPE differed from FSI results by 0.75â¯mmHg and -1.34â¯mmHg respectively. The present study considers important validation aspects of non-invasive pressure difference estimation based on 4D flow MRI, showing the potential of this technology to be more broadly applied to the clinical practice.
Asunto(s)
Coartación Aórtica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Modelos Cardiovasculares , Algoritmos , Aorta , Velocidad del Flujo Sanguíneo , Cateterismo Cardíaco , Estudios de Factibilidad , Análisis de Elementos Finitos , Hemodinámica , Humanos , Modelación Específica para el Paciente , Presión , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVES: This study applied advanced 4-dimensional flow magnetic resonance imaging processing to assess differences in aortic flow dynamics after valve sparing root replacement, with and without reconstruction of the Valsalva sinuses. METHODS: We enrolled patients after valve sparing root replacement with a straight tubular prosthesis (n = 10) or with a prosthesis with Valsalva neosinuses (n = 10); age-matched subjects without cardiovascular diseases served as controls (n = 10). 4-Dimensional flow magnetic resonance imaging acquisitions were performed on a 3.0T magnetic resonance imaging unit. In-house processing was used to segment the aortic lumen and extract the volumetric 4-dimensional flow velocity field. Velocity flow streamlines were computed to compare the amount of rotational flow and wall shear stress. Occurrence of abnormal wall shear stress (WSS) was estimated within the descending aorta of each surgical group. RESULTS: Physiologic-like sinus vortices were visible in the aortic root when using the prosthesis with neosinuses, whereas straight tubular graft revealed localized intrados malrotations (P = .003 for organized vortical structures vs neosinuses graft and P < .001 vs control). In the ascending aorta, recreation of the sinuses resulted in significantly lower velocity and WSS than in the straight tubular graft (P < .001) and controls (P < .001), these alterations were attenuated in the mid-descending aorta. Incidence of abnormal WSS was markedly higher in the straight tube grafts than neosinus of Valsalva grafts. CONCLUSIONS: Re-creation of the sinuses of Valsalva during valve-sparing root replacement is associated with more physiologic flow and significantly lower WSS in the aortic root. Lower WSSs in the distal thoracic aorta is a novel finding with potential implications on distal aortic remodeling.
Asunto(s)
Aorta/fisiología , Aorta/cirugía , Velocidad del Flujo Sanguíneo/fisiología , Implantación de Prótesis Vascular , Adulto , Anciano , Aorta/diagnóstico por imagen , Válvula Aórtica/fisiología , Implantación de Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/métodos , Implantación de Prótesis Vascular/estadística & datos numéricos , Estudios de Casos y Controles , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tratamientos Conservadores del ÓrganoRESUMEN
The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices.
Asunto(s)
Calor , Hidrodinámica , Imagenología Tridimensional/instrumentación , Imagen por Resonancia Magnética/instrumentación , Oxigenadores , Velocidad del Flujo Sanguíneo , Humanos , Imagenología Tridimensional/métodos , Proyectos Piloto , Factores de TiempoRESUMEN
OBJECTIVES: This study was undertaken to evaluate the flow dynamics in the aortic root after valve-sparing root replacement with and without neosinuses of Valsalva reconstruction, by exploiting the capability of 4D Flow imaging to measure in vivo blood velocity fields and 3D geometric flow patterns. METHODS: Ten patients who underwent valve-sparing root replacement utilizing grafts with neosinuses or straight tube grafts (5 cases each) were evaluated by 4D Flow imaging at a mean of 46.5 months after surgery. We used in-house processing tools to quantify relevant bulk flow variables (flow rate, stroke volume, peak velocity and mean velocity), wall shear stresses and the amount of flow rotation characterizing the region enclosed by the graft and the aortic valve leaflets. RESULTS: Despite bulk flows with similar peak velocities, flow rates and stroke volumes (P = 0.31-1.00), the neosinuses graft was associated with a lower mean velocity (P < 0.03) and magnitude of wall shear stress along the axial direction of the vessel wall (P < 0.05) at the proximal root level but remained comparable along the circumferential direction (P = 0.22-1.0) to the straight tube graft. Flow rotation was evidently and systematically higher in the neosinuses grafts, characterized by streamline rotations higher than 270°, nearly triple that of tubular grafts (10.3 ÷ 14.0% of all aortic streamline vs 2.2 ÷ 5.7%, P = 0.008). CONCLUSIONS: Recreation of the sinuses of Valsalva during valve-sparing root replacement is associated with significantly lower wall shear stress and organized vortical flows at the level of the sinus that are not evident using the straight tube graft. These findings need confirmation in larger studies and could have important implications in terms of aortic valve durability.
Asunto(s)
Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Velocidad del Flujo Sanguíneo/fisiología , Implantación de Prótesis Vascular/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Aorta Torácica/cirugía , Aneurisma de la Aorta Torácica/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Reproducibilidad de los ResultadosRESUMEN
Valve-sparing aortic root replacement (VSRR) with reimplantation technique is an effective alternative for young patients with dilated roots and preserved cusps, which avoids the risks of lifelong anticoagulation or valve degeneration. New grafts with anatomically-shaped sinuses have been developed in order to preserve aortic root physiology, which could decrease complication rates and improve durability. However, controversy remains regarding the effect of recreation of the sinuses of Valsalva during VSRR on long-term outcomes. The novel 4D flow technique, exploiting its unique ability to combine anatomical evaluation of the root with fluid-dynamic assessment of aortic flow, enables integrated analysis of the close interaction between graft design, valvular morphology and three-dimensional (3D) flow characteristics. Early experimental studies have shown how graft shape affects the aortic root flow pattern, formation of vortexes and helicity of downstream flow; however, the clinical significance of these findings is yet to be clarified. Various and still unexplored knowledge can be obtained from the qualitative and quantitative analysis of these complex datasets, that could shed more light on which is the best among myriad surgical techniques and grafts adopted in VSRR. The extraordinary potential 4D flow imaging opens new boundless horizons in the perspective of an increasingly patient-tailored surgical planning.
RESUMEN
Bicuspid aortic valve (BAV) is the most common congenital cardiac disease and is a foremost risk factor for aortopathies. Despite the genetic basis of BAV and of the associated aortopathies, BAV-related alterations in aortic fluid-dynamics, and particularly in wall shear stresses (WSSs), likely play a role in the progression of aortopathy, and may contribute to its pathogenesis. To test whether WSS may trigger aortopathy, in this study we used 4D Flow sequences of phase-contrast cardiac magnetic resonance imaging (CMR) to quantitatively compare the in vivo fluid dynamics in the thoracic aorta of two groups of subjects: (i) five prospectively enrolled young patients with normo-functional BAV and with no aortic dilation and (ii) ten age-matched healthy volunteers. Through the semi-automated processing of 4D Flow data, the aortic bulk flow at peak systole was quantified, and WSSs acting on the endothelium of the ascending aorta were characterized throughout the systolic phase in terms of magnitude and time-dependency through a method recently developed by our group. Variables computed for each BAV patient were compared vs. the corresponding distribution of values obtained for healthy controls. In BAV patients, ascending aorta diameter was measured on cine-CMR images at baseline and at 3-year follow-up. As compared to controls, normo-functional BAV patients were characterized by minor bulk flow disturbances at peak systole. However, they were characterized by evident alterations of WSS distribution and peak values in the ascending aorta. In particular, in four BAV patients, who were characterized by right-left leaflet fusion, WSS peak values exceeded by 27-46% the 90th percentile of the distribution obtained for healthy volunteers. Only in the BAV patient with right-non-coronary leaflet fusion the same threshold was exceeded by 132%. Also, evident alterations in the time-dependency of WSS magnitude and direction were observed. Despite, these fluid-dynamic alterations, no clinically relevant anatomical remodeling was observed in the BAV patients at 3-year follow-up. In light of previous evidence from the literature, our results suggest that WSS alterations may precede the onset of aortopathy and may contribute to its triggering, but WSS-driven anatomical remodeling, if any, is a very slow process.
RESUMEN
Surgical valve replacement in patients with severe calcific aortic valve disease using either bioprosthetic or mechanical heart valves is still limited by structural valve deterioration for the former and thrombosis risk mandating anticoagulant therapy for the latter. Prosthetic polymeric heart valves have the potential to overcome the inherent material and design limitations of these valves, but their development is still ongoing. The aim of this study was to characterize the hemodynamics and thrombogenic potential of the Polynova polymeric trileaflet valve prototype using a fluid-structure interaction (FSI) approach. The FSI model replicated experimental conditions of the valve as tested in a left heart simulator. Hemodynamic parameters (transvalvular pressure gradient, flow rate, maximum velocity, and effective orifice area) were compared to assess the validity of the FSI model. The thrombogenic footprint of the polymeric valve was evaluated using a Lagrangian approach to calculate the stress accumulation (SA) values along multiple platelet trajectories and their statistical distribution. In the commissural regions, platelets were exposed to the highest SA values because of highest stress levels combined with local reverse flow patterns and vortices. Stress-loading waveforms from representative trajectories in regions of interest were emulated in our hemodynamic shearing device (HSD). Platelet activity was measured using our platelet activation state (PAS) assay and the results confirmed the higher thrombogenic potential of the commissural hotspots. In conclusion, the proposed method provides an in depth analysis of the hemodynamic and thrombogenic performance of the polymer valve prototype and identifies locations for further design optimization.