Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cytotherapy ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970613

RESUMEN

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.

2.
Cytotherapy ; 25(12): 1300-1306, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37318395

RESUMEN

BACKGROUND AIMS: Amidst the success of cell therapy for the treatment of onco-hematological diseases, the first recently Food and Drug Administration-approved gene therapy product for patients with transfusion-dependent ß-thalassemia (TDT) indicates the feasibility of gene therapy as curative for genetic hematologic disorders. This work analyzed the current-world scenario of clinical trials involving gene therapy for ß-hemoglobinopathies. METHODS: Eighteen trials for patients with sickle cell disease (SCD) and 24 for patients with TDT were analyzed. RESULTS: Most are phase 1 and 2 trials, funded by the industry and are currently recruiting volunteers. Treatment strategies for both diseases are fetal hemoglobin induction (52.4%); addition of wild-type or therapeutic ß-globin gene (38.1%) and correction of mutations (9,5%). Gene editing (52.4%) and gene addition (40.5%) are the two most used techniques. The United States and France are the countries with the greatest number of clinical trials centers for SCD, with 83.1% and 4.2%, respectively. The United States (41.1%), China (26%) and Italy (6.8%) lead TDT trials centers. CONCLUSIONS: Geographic trial concentration indicates the high costs of this technology, logistical issues and social challenges that need to be overcome for gene therapy to reach low- and middle-income countries where SCD and TDT are prevalent and where they most impact the patient's health.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinopatías , Humanos , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , China , Terapia Genética
3.
J Neurovirol ; 28(1): 27-34, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35025066

RESUMEN

Proviral load (PVL) is one of the determining factors for the pathogenesis and clinical progression of the human T-lymphotropic virus type I (HTLV-1) infection. In the present study, we optimized a sensitive multiplex real-time PCR for the simultaneous detection and quantification of HTLV-1 proviral load and beta-globin gene as endogenous control. The values obtained for HTLV-1 PVL were used to monitor the clinical evolution in HTLV-1-infected individuals. A vector containing cloned DNA targets of the real-time PCR for the beta-globin gene and the HTLV-1pol region was constructed. For the reaction validation, we compared the amplification efficiency of the constructed vector and MT-2 cell line containing HTLV-1. The analytical sensitivity of the reaction was evaluated by the application of a standard curve with a high order of magnitude. PVL assay was evaluated on DNA samples of HTLV-1 seropositive individuals. The construct showed adequate amplification for the beta-globin and HTLV-1 pol genes when evaluated as multiplex real-time PCR (slope = 3.23/3.26, Y-intercept = 40.18/40.73, correlation coefficient r2 = 0.99/0.99, and efficiency = 103.98/102.78, respectively). The quantification of PVL using the MT-2 cell line was equivalent to the data obtained using the plasmidial curve (2.5 copies per cell). In HTLV-1-associatedmyelopathy/tropical spastic paraparesis patients, PVL was significantly higher (21315 ± 2154 copies/105 PBMC) compared to asymptomatic individuals (1253 ± 691 copies/105 PBMC). The obtained results indicate that the optimized HTLV-1 PVL assay using plasmidial curve can be applied for monitoring and follow-up of the progression of HTLV-1 disease. The use of a unique reference plasmid for both HTLV-1 and endogenous gene allows a robust and effective quantification of HTLV-1 PVL. In addition, the developed multiplex real-time PCR assay was efficient to be used as a tool to monitor HTLV-1-infected individuals.


Asunto(s)
Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , ADN Viral/análisis , ADN Viral/genética , Infecciones por HTLV-I/diagnóstico , Infecciones por HTLV-I/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucocitos Mononucleares , Paraparesia Espástica Tropical/diagnóstico , Paraparesia Espástica Tropical/genética , Provirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carga Viral/métodos , Globinas beta/análisis , Globinas beta/genética
4.
Cytotherapy ; 24(8): 850-860, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643755

RESUMEN

BACKGROUND AIMS: Lentiviral vectors (LVs) have been used extensively in gene therapy protocols because of their high biosafety profile and capacity to stably express a gene of interest. Production of these vectors for the generation of chimeric antigen receptor (CAR) T cells in academic and research centers is achieved using serum-supplemented static monolayer cultures. Although efficient for pre-clinical studies, this method has a number of limitations. The main hurdles are related to its incompatibility with robust and controlled large-scale production. For this reason, cell suspension culture in bioreactors is desirable. Here the authors report the transition of LV particle production from serum-supplemented monolayer to serum-free suspension culture with the objective of generating CAR T cells. METHODS: A self-inactivating LV anti-CD19 CAR was produced by transient transfection using polyethylenimine (PEI) in human embryonic kidney 293 T cells previously adapted to serum-free suspension culture. RESULTS: LV production of 8 × 106 transducing units (TUs)/mL was obtained in serum-supplemented monolayer culture. LV production in the serum-free suspension conditions was significantly decreased compared with monolayer production. Therefore, optimization of the transfection protocol was performed using design of experiments. The results indicated that the best condition involved the use of 1 µg of DNA/106 cells, 1 × 106 cells/mL and PEI:DNA ratio of 2.5:1. This condition used less DNA and PEI compared with the standard, thereby reducing production costs. This protocol was further improved with the addition of 5 mM of sodium butyrate and resulted in an increase in production, with an average of 1.5 × 105 TUs/mL. LV particle functionality was also assessed, and the results indicated that in both conditions the LV was capable of inducing CAR expression and anti-tumor response in T cells, which in turn were able to identify and kill CD19+ cells in vitro. CONCLUSIONS: This study demonstrates that the transition of LV production from small-scale monolayer culture to scalable and controllable bioreactors can be quite challenging and requires extensive work to obtain satisfactory production.


Asunto(s)
Lentivirus , Receptores Quiméricos de Antígenos , Linfocitos T , Técnicas de Cultivo de Célula/métodos , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Transfección
5.
Biotechnol Lett ; 43(1): 143-152, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33130980

RESUMEN

OBJECTIVE: To develop recombinant factor IX (FIX) variants with augmented clotting activity. RESULTS: We generated three new variants, FIX-YKALW, FIX-ALL and FIX-LLW, expressed in SK-Hep-1 cells and characterized in vitro and in vivo. FIX-YKALW showed the highest antigen expression level among the variants (2.17 µg-mL), followed by FIX-LLW (1.5 µg-mL) and FIX-ALL (0.9 µg-mL). The expression level of FIX variants was two-five fold lower than FIX-wild-type (FIX-WT) (4.37 µg-mL). However, the biological activities of FIX variants were 15-31 times greater than FIX-WT in the chromogenic assay. Moreover, the new variants FIX-YKALW, FIX-LLW and FIX-ALL also presented higher specific activity than FIX-WT (17, 20 and 29-fold higher, respectively). FIX variants demonstrated a better clotting time than FIX-WT. In hemophilia B mice, we observed that FIX-YKALW promoted hemostatic protection. CONCLUSION: We have developed three improved FIX proteins with potential for use in protein replacement therapy for hemophilia B.


Asunto(s)
Coagulantes , Factor IX , Proteínas Recombinantes , Animales , Coagulación Sanguínea/efectos de los fármacos , Línea Celular , Coagulantes/química , Coagulantes/metabolismo , Coagulantes/farmacología , Factor IX/química , Factor IX/genética , Factor IX/metabolismo , Factor IX/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
6.
J Cell Sci ; 131(4)2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467236

RESUMEN

Although hematopoietic stem cell (HSC) therapy for hematological diseases can lead to a good outcome from the clinical point of view, the limited number of ideal donors, the comorbidity of patients and the increasing number of elderly patients may limit the application of this therapy. HSCs can be generated from induced pluripotent stem cells (iPSCs), which requires the understanding of the bone marrow and liver niches components and function in vivo iPSCs have been extensively applied in several studies involving disease models, drug screening and cellular replacement therapies. However, the somatic reprogramming by transcription factors is a low-efficiency process. Moreover, the reprogramming process is also regulated by microRNAs (miRNAs), which modulate the expression of the transcription factors OCT-4 (also known as POU5F1), SOX-2, KLF-4 and MYC, leading somatic cells to a pluripotent state. In this Review, we present an overview of the challenges of cell reprogramming protocols with regard to HSC generation from iPSCs, and highlight the potential role of miRNAs in cell reprogramming and in the differentiation of induced pluripotent stem cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Reprogramación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Hígado/citología , Hígado/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Nicho de Células Madre/genética , Factores de Transcripción/genética
7.
J Cell Biochem ; 120(10): 16723-16732, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31090958

RESUMEN

Topographical modifications of titanium (Ti) at the nanoscale level generate surfaces that regulate several signaling pathways and cellular functions, which may affect the process of osseointegration. Here, we investigated the participation of integrin αV in the osteogenic capacity of Ti with nanotopography. Machined titanium discs (untreated) were submitted to treatment with H2 SO4 /H2 O2 to produce the nanotopography (nanostructured). First, the greater osteogenic capacity of the nanotopography that increased osteoblast differentiation of mesenchymal stem cells compared with untreated topography was shown. Also, the nanostructured surface increased (regulation ≥ 1.9-fold) the gene expression of 6 integrins from a custom array plate utilized to evaluate the gene expression of 84 genes correlated with cell adhesion signaling pathway, including integrin αV, which is involved in osteoblast differentiation. By silencing integrin αV in MC3T3-E1 cells cultured on nanotopography, the impairment of osteoblast differentiation induced by this surface was observed. In conclusion, it was shown that nanotopography regulates the expression of several components of the cell adhesion signaling pathway and its higher osteogenic potential is, at least in part, due to its ability to upregulate the expression of integrin αV. Together with previous data that showed the participation of integrins α1, ß1, and ß3 in the nanotopography osseoinduction activity, we have uncovered the pivotal role of this family of membrane receptors in the osteogenic potential of this surface.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Integrina alfa5/biosíntesis , Nanoestructuras , Osteoblastos/metabolismo , Titanio/farmacología , Animales , Diferenciación Celular/genética , Línea Celular , Integrina alfa5/genética , Masculino , Osteoblastos/citología , Ratas , Ratas Wistar , Propiedades de Superficie
8.
Protein Expr Purif ; 137: 26-33, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28651975

RESUMEN

Recombinant factor VII (rFVII) is the main therapeutic choice for hemophilia patients who have developed inhibitory antibodies against conventional treatments (FVIII and FIX). Because of the post-translational modifications, rFVII needs to be produced in mammalian cell lines. In this study, for the first time, we have shown efficient rFVII production in HepG2, Sk-Hep-1, and HKB-11 cell lines. Experiments in static conditions for a period of 96 h showed that HepG2-FVII produced the highest amounts of rhFVII, with an average of 1843 ng/mL. Sk-hep-1-FVII cells reached a maximum protein production of 1432 ng/mL and HKB-11-FVII cells reached 1468 ng/mL. Sk-Hep-1-rFVII and HKB-11-rFVII were selected for the first step of scale-up. Over 10 days of spinner flask culture, HKB-11 and SK-Hep-1 cells showed a cumulative production of rFVII of 152 µg and 202.6 µg in 50 mL, respectively. Thus, these human cell lines can be used for an efficient production of recombinant FVII. With more investment in basic research, human cell lines can be optimized for the commercial production of different bio therapeutic proteins.


Asunto(s)
Factor VII , Expresión Génica , Línea Celular , Factor VII/biosíntesis , Factor VII/genética , Factor VII/aislamiento & purificación , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
9.
Cell Biol Toxicol ; 33(3): 233-250, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28039590

RESUMEN

Ten years have passed since the first publication announcing the generation of induced pluripotent stem cells (iPSCs). Issues related to ethics, immune rejection, and cell availability seemed to be solved following this breakthrough. The development of iPSC technology allows advances in in vitro cell differentiation for cell therapy purpose and other clinical applications. This review provides a perspective on the iPSC potential for cell therapies, particularly for hematological applications. We discuss the advances in in vitro hematopoietic differentiation, the possibilities to employ iPSC in hematology studies, and their potential clinical application in hematologic diseases. The generation of red blood cells and functional T cells and the genome editing technology applied to mutation correction are also covered. We highlight some of the requirements and obstacles to be overcome before translating these cells from research to the clinic, for instance, iPSC variability, genotoxicity, the differentiation process, and engraftment. Also, we evaluate the patent landscape and compile the clinical trials in the field of pluripotent stem cells. Currently, we know much more about iPSC than in 2006, but there are still challenges that must be solved. A greater understanding of molecular mechanisms underlying the generation of hematopoietic stem cells is necessary to produce suitable and transplantable hematopoietic stem progenitor cells from iPSC.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos
10.
Protein Expr Purif ; 121: 149-56, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26802680

RESUMEN

Factor IX (FIX) is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the Hemophilia B treatment. We evaluated the potential of recombinant human FIX (rhFIX) expression in 293T and SK-Hep-1 human cell lines. SK-Hep-1-FIX cells produced higher levels of biologically active protein. The growth profile of 293T-FIX cells was not influenced by lentiviral integration number into the cellular genome. SK-Hep-1-FIX cells showed a significantly lower growth rate than SK-Hep-1 cells. γ-carboxylation process is significant to FIX biological activity, thus we performed a expression analysis of genes involved in this process. The 293T gene expression suggests that this cell line could efficiently carboxylate FIX, however only 28% of the total secreted protein is active. SK-Hep-1 cells did not express high amounts of VKORC1 and carboxylase, but this cell line secreted large amounts of active protein. Enrichment of culture medium with Ca(+2) and Mg(+2) ions did not affect positively rhFIX expression in SK-Hep-1 cells. In 293T cells, the addition of 0.5 mM Ca(+2) and 1 mM Mg(+2) resulted in higher rhFIX concentration. SK-Hep-1 cell line proved to be very effective in rhFIX production, and it can be used as a novel biotechnological platform for the production of recombinant proteins.


Asunto(s)
Biotecnología , Factor IX/biosíntesis , Proteínas Recombinantes/biosíntesis , Factor IX/genética , Expresión Génica , Vectores Genéticos , Células HEK293 , Humanos , Proteínas Recombinantes/genética
11.
Biotechnol Lett ; 38(3): 385-94, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26564408

RESUMEN

OBJECTIVE: To establish a serum-free suspension process for production of recombinant human factor IX (rhFIX) based on the human cell line HEK 293T by evaluating two approaches: (1) serum-free suspension adaptation of previously genetic modified cells (293T-FIX); and (2) genetic modification of cells already adapted to such conditions (293T/SF-FIX). RESULTS: After 10 months, 293T-FIX cells had become adapted to FreeStyle 293 serum-free medium (SFM) in Erlenmeyer flasks. After 48 and 72 h of culture, 2.1 µg rhFIX/ml and 3.3 µg rhFIX/ml were produced, respectively. However, no biological activity was detected. In the second approach, wild-type 293T cells were adapted to the same SFM (adaptation process took only 2 months) and then genetically modified for rhFIX production. After 48 h of culture, rhFIX reached 1.5 µg/ml with a biological activity of 0.2 IU/ml, while after 72 h, the production was 2.4 µg/ml with a biological activity of 0.3 IU/ml. CONCLUSION: The findings demonstrate that the best approach to establish an rhFIX production process in suspension SFM involves the genetic modification of cells already adapted to the final conditions. This approach is time saving and may better ensure the quality of the produced protein.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Factor IX/genética , Factor IX/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Medio de Cultivo Libre de Suero , Células HEK293 , Humanos
12.
Biotechnol Lett ; 37(5): 991-1001, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25650340

RESUMEN

Ligation-mediated-PCR was performed followed by the mapping of 177 and 150 integration sites from HepG2 and Hek293 transduced with chimera vector carrying recombinant human Factor IX (rhFIX) cDNA, respectively. The sequences were analyzed for chromosome preference, CpG, transcription start site (TSS), repetitive elements, fragile sites and target genes. In HepG2, rhFIX was had an increased preference for chromosomes 6 and 17; the median distance to the nearest CpG islands was 15,240 base pairs and 37 % of the integrations occurred in RefSeq genes. In Hek293, rhFIX had an increased preference for chromosome 5; the median distance to the nearest CpG islands was 209,100 base pairs and 74 % of the integrations occurred in RefSeq genes. The integrations in both cell lines were distant from the TSS. The integration patterns associated with this vector are different in each cell line.


Asunto(s)
Factor IX/genética , Factor IX/metabolismo , Virus de la Leucemia Murina de Moloney/fisiología , Virus del Sarcoma Murino de Moloney/fisiología , Integración Viral , Línea Celular , Vectores Genéticos , Humanos , Virus de la Leucemia Murina de Moloney/genética , Virus del Sarcoma Murino de Moloney/genética , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción Genética
14.
Front Immunol ; 14: 1226518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818365

RESUMEN

Introduction: Natural killer 92 (NK-92) cells are an attractive therapeutic approach as alternative chimeric antigen receptor (CAR) carriers, different from T cells, once they can be used in the allogeneic setting. The modest in vivo outcomes observed with NK-92 cells continue to present hurdles in successfully translating NK-92 cell therapies into clinical applications. Adoptive transfer of CAR-NK-92 cells holds out the promise of therapeutic benefit at a lower rate of adverse events due to the absence of GvHD and cytokine release syndrome. However, it has not achieved breakthrough clinical results yet, and further improvement of CAR-NK-92 cells is necessary. Methods: In this study, we conducted a comparative analysis between CD19-targeted CAR (CAR.19) co-expressing IL-15 (CAR.19-IL15) with IL-15/IL-15Rα (CAR.19-IL15/IL15Rα) to promote NK cell proliferation, activation, and cytotoxic activity against B-cell leukemia. CAR constructs were cloned into lentiviral vector and transduced into NK-92 cell line. Potency of CAR-NK cells were assessed against CD19-expressing cell lines NALM-6 or Raji in vitro and in vivo in a murine model. Tumor burden was measured by bioluminescence. Results: We demonstrated that a fourth- generation CD19-targeted CAR (CAR.19) co-expressing IL-15 linked to its receptor IL-15/IL-15Rα (CAR.19-IL-15/IL-15Rα) significantly enhanced NK-92 cell proliferation, proinflammatory cytokine secretion, and cytotoxic activity against B-cell cancer cell lines in vitro and in a xenograft mouse model. Conclusion: Together with the results of the systematic analysis of the transcriptome of activated NK-92 CAR variants, this supports the notion that IL-15/IL-15Rα comprising fourth-generation CARs may overcome the limitations of NK-92 cell-based targeted tumor therapies in vivo by providing the necessary growth and activation signals.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales , Antígenos CD19 , Proliferación Celular
15.
Protein Expr Purif ; 84(1): 147-53, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22580292

RESUMEN

The demand for recombinant therapeutic proteins is significantly increasing. There is a constant need to improve the existing expression systems, and also developing novel approaches to face the therapeutic proteins demands. Human cell lines have emerged as a new and powerful alternative for the production of human therapeutic proteins because this expression system is expected to produce recombinant proteins with post translation modifications more similar to their natural counterpart and reduce the potential immunogenic reactions against nonhuman epitopes. Currently, little information about the cultivation of human cells for the production of biopharmaceuticals is available. These cells have shown efficient production in laboratory scale and represent an important tool for the pharmaceutical industry. This review presents the cell lines available for large-scale recombinant proteins production and evaluates critically the advantages of this expression system in comparison with other expression systems for recombinant therapeutic protein production.


Asunto(s)
Reactores Biológicos , Biotecnología/métodos , Línea Celular , Proteínas Recombinantes/biosíntesis , Humanos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico
16.
Biotechnol Lett ; 34(8): 1435-43, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22488441

RESUMEN

Hemophilia A is caused by a deficiency in coagulation factor VIII. Recombinant factor VIII can be used as an alternative although it is unavailable for most patients. Here, we describe the production of a human recombinant B-domain-deleted FVIII (rBDDFVIII) by the human cell line SK-HEP-1, modified by a lentiviral vector rBDDFVIII was produced by recombinant SK-HEP cells (rSK-HEP) at 1.5-2.1 IU/10(6) in 24 h. The recombinant factor had increased in vitro stability when compared to commercial pdFVIII. The functionality of rBDDFVIII was shown by its biological activity and by tail-clip challenge in hemophilia A mice. The rSK-HEP cells grew in a scalable system and produced active rBDDFVIII, indicating that this platform production can be optimized to meet the commercial production scale needs.


Asunto(s)
Factor VIII/biosíntesis , Lentivirus/genética , Fragmentos de Péptidos/biosíntesis , Proteínas Recombinantes/biosíntesis , Animales , Western Blotting , Técnicas de Cultivo de Célula , Línea Celular , Modelos Animales de Enfermedad , Factor VIII/química , Factor VIII/genética , Factor VIII/farmacología , Citometría de Flujo , Vectores Genéticos/genética , Hemofilia A/tratamiento farmacológico , Humanos , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Análisis de Supervivencia
17.
Immunother Adv ; 2(1): ltac003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35919494

RESUMEN

Cell therapy is an innovative approach that permits numerous possibilities in the field of cancer treatment. CAR-T cells have been successfully used in patients with hematologic relapsed/refractory. However, the need for autologous sources for T cells is still a major drawback. CAR-NK cells have emerged as a promising resource using allogeneic cells that could be established as an off-the-shelf treatment. NK cells can be obtained from various sources, such as peripheral blood (PB), bone marrow, umbilical cord blood (CB), and induced pluripotent stem cells (iPSC), as well as cell lines. Genetic engineering of NK cells to express different CAR constructs for hematological cancers and solid tumors has shown promising preclinical results and they are currently being explored in multiple clinical trials. Several strategies have been employed to improve CAR-NK-cell expansion and cytotoxicity efficiency. In this article, we review the latest achievements and progress made in the field of CAR-NK-cell therapy.

18.
BMC Biotechnol ; 11: 114, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-22115125

RESUMEN

BACKGROUND: Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 µg/106 cells) and repeated transfections done at 34° and 37 °C. RESULTS: We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34 °C using 0.4 µg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. CONCLUSION: Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability.


Asunto(s)
Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Medio de Cultivo Libre de Suero , Factor VIII/biosíntesis , Proteínas Recombinantes/biosíntesis , Transfección/métodos , Amoníaco/análisis , Recuento de Células Sanguíneas/métodos , Ensayo de Inmunoadsorción Enzimática , Eritrosina , Glucosa/análisis , Células HEK293 , Humanos , Ácido Láctico/análisis
19.
Exp Mol Pathol ; 91(3): 664-72, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21930125

RESUMEN

The LX-2 cell line has characteristics of hepatic stellate cells (HSCs), which are considered pericytes of the hepatic microcirculatory system. Recent studies have suggested that HSCs might have mesenchymal origin. We have performed an extensive characterization of the LX-2 cells and have compared their features with those of mesenchymal cells. Our data show that LX-2 cells have a phenotype resembling activated HSCs as well as bone marrow-derived mesenchymal stem cells (BM-MSCs). Our immunophenotypic analysis showed that LX-2 cells are positive for activated HSC markers (αSMA, GFAP, nestin and CD271) and classical mesenchymal makers (CD105, CD44, CD29, CD13, CD90, HLA class-I, CD73, CD49e, CD166 and CD146) but negative for the endothelial marker CD31 and endothelial progenitor cell marker CD133 as well as hematopoietic markers (CD45 and CD34). LX-2 cells also express the same transcripts found in immortalized and primary BM-MSCs (vimentin, annexin 5, collagen 1A, NG2 and CD140b), although at different levels. We show that LX-2 cells are capable to differentiate into multilineage mesenchymal cells in vitro and can stimulate new blood vessel formation in vivo. LX-2 cells appear not to possess tumorigenic potential. Thus, the LX-2 cell line behaves as a multipotent cell line with similarity to BM-MSCs. This line should be useful for further studies to elucidate liver regeneration mechanisms and be the foundation for development of hepatic cell-based therapies.


Asunto(s)
Línea Celular , Células Estrelladas Hepáticas , Células Madre Mesenquimatosas , Animales , Antígenos CD/metabolismo , Células de la Médula Ósea/citología , Diferenciación Celular , Trasplante de Células , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones SCID , Células Madre Multipotentes/citología , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/patología , Neovascularización Patológica , Osteogénesis
20.
Biotechnol Appl Biochem ; 58(4): 243-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21838798

RESUMEN

Hemophilia B is a genetic disease of the coagulation system that affects one in 30,000 males worldwide. Recombinant human Factor IX (rhFIX) has been used for hemophilia B treatment, but the amount of active protein generated by these systems is inefficient, resulting in a high-cost production of rhFIX. In this study, we developed an alternative for rhFIX production. We used a retrovirus system to obtain two recombinant cell lines. We first tested rhFIX production in the human embryonic kidney 293 cells (293). Next, we tested a hepatic cell line (HepG2) because FIX is primarily expressed in the liver. Our results reveal that intracellular rhFIX expression was more efficient in HepG2/rhFIX (46%) than in 293/rhFIX (21%). The activated partial thromboplastin time test showed that HepG2/rhFIX expressed biologically active rhFIX 1.5 times higher than 293/rhFIX (P = 0.016). Recovery of rhFIX from the HepG2 by reversed-phase chromatography was straightforward. We found that rhFIX has a pharmacokinetic profile similar to that of FIX purified from human plasma when tested in hemophilic B model. HepG2/rhFIX cell line produced the highest levels of rhFIX, representing an efficient in vitro expression system. This work opens up the possibility of significantly reducing the costs of rhFIX production, with implications for expanding hemophilia B treatment in developing countries.


Asunto(s)
Biotecnología/métodos , Factor IX/biosíntesis , Proteínas Recombinantes/biosíntesis , Animales , Cromatografía de Fase Inversa , Factor IX/aislamiento & purificación , Factor IX/farmacocinética , Expresión Génica , Vectores Genéticos , Células HEK293 , Hemofilia B/tratamiento farmacológico , Células Hep G2 , Humanos , Ratones , Tiempo de Tromboplastina Parcial , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacocinética , Retroviridae , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA