Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cereb Cortex ; 32(23): 5420-5437, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35151230

RESUMEN

Chronic adolescent administration of marijuana's major psychoactive compound, ∆9-tetrahydrocannabinol (Δ9-THC), produces adaptive changes in adult social and cognitive functions sustained by prelimbic prefrontal cortex (PL-PFC). Memory and learning processes in PL-PFC neurons can be regulated through cholinergic muscarinic-2 receptors (M2R) and modulated by activation of cannabinoid-1 receptors (CB1Rs) targeted by Δ9-THC. Thus, chronic exposure to Δ9-THC during adolescence may alter the expression and/or distribution of M2Rs in PL-PFC neurons receiving CB1R terminals. We tested this hypothesis by using electron microscopic dual CB1R and M2R immunolabeling in adult C57BL/6 J male mice that had received vehicle or escalating dose of Δ9-THC through adolescence. In vehicle controls, CB1R immunolabeling was mainly localized to axonal profiles virtually devoid of M2R but often apposing M2R-immunoreactive dendrites and dendritic spines. The dendrites received inputs from CB1R-labeled or unlabeled terminals, whereas spines received asymmetric synapses exclusively from axon terminals lacking CB1Rs. Adolescent Δ9-THC significantly increased plasmalemmal M2R-immunogold density exclusively in large dendrites receiving input from CB1R-labeled terminals. In contrast, cytoplasmic M2R-immunogold density decreased in small spines of the Δ9-THC-treated adult mice. We conclude that Δ9-THC engagement of CB1Rs during adolescence increases M2R plasmalemmal accumulation in large proximal dendrites and decreases M2R cytoplasmic expression in small spines of PL-PFC.


Asunto(s)
Dronabinol , Corteza Prefrontal , Receptor Cannabinoide CB1 , Receptor Muscarínico M2 , Animales , Masculino , Ratones , Dronabinol/farmacología , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Muscarínico M2/metabolismo
2.
J Neurosci ; 41(6): 1349-1362, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303682

RESUMEN

There are significant neurogenic and inflammatory influences on blood pressure, yet the role played by each of these processes in the development of hypertension is unclear. Tumor necrosis factor α (TNFα) has emerged as a critical modulator of blood pressure and neural plasticity; however, the mechanism by which TNFα signaling contributes to the development of hypertension is uncertain. We present evidence that following angiotensin II (AngII) infusion the TNFα type 1 receptor (TNFR1) plays a key role in heightened glutamate signaling in the hypothalamic paraventricular nucleus (PVN), a key central coordinator of blood pressure control. Fourteen day administration of a slow-pressor dose of AngII in male mice was associated with transcriptional and post-transcriptional (increased plasma membrane affiliation) regulation of TNFR1 in the PVN. Further, TNFR1 was shown to be critical for elevated NMDA-mediated excitatory currents in sympathoexcitatory PVN neurons following AngII infusion. Finally, silencing PVN TNFR1 prevented the increase in systolic blood pressure induced by AngII. These findings indicate that TNFR1 modulates a cellular pathway involving an increase in NMDA-mediated currents in the PVN following AngII infusion, suggesting a mechanism whereby TNFR1 activation contributes to hypertension via heightened hypothalamic glutamate-dependent signaling.SIGNIFICANCE STATEMENT Inflammation is critical for the emergence of hypertension, yet the mechanisms by which inflammatory mediators contribute to this dysfunction are not clearly defined. We show that tumor necrosis factor α receptor 1 (TNFR1) in the paraventricular hypothalamic nucleus (PVN), a critical neuroregulator of cardiovascular function, plays an important role in the development of hypertension in mice. In the PVN, TNFR1 expression and plasma membrane localization are upregulated during hypertension induced by angiotensin II (AngII). Further, TNFR1 activation was essential for NMDA signaling and the heightening NMDA currents during hypertension. Finally, TNFR1 silencing in the PVN inhibits elevated blood pressure induced by AngII. These results point to a critical role for hypothalamic TNFR1 signaling in hypertension.


Asunto(s)
Angiotensina II/toxicidad , Ácido Glutámico/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Animales , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos
3.
Proc Biol Sci ; 289(1986): 20221565, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36321487

RESUMEN

In the conventional model of serotonin neurotransmission, serotonin released by neurons in the midbrain raphe nuclei exerts its actions on forebrain neurons by interacting with a large family of post-synaptic receptors. The actions of serotonin are terminated by active transport of serotonin back into the releasing neuron, which is mediated by the serotonin reuptake transporter (SERT). Because SERT is expressed pre-synaptically and is widely thought to be the only serotonin transporter in the forebrain, the conventional model does not include serotonin transport into post-synaptic neurons. However, a large body of evidence accumulating since the 1970s has shown that serotonin, despite having a positive charge, can cross cell membranes through a diffusion-like process. Multiple low-affinity, high-capacity, sodium-independent transporters, widely expressed in the brain, allow the carrier-mediated diffusion of serotonin into forebrain neurons. The amount of serotonin crossing cell membranes through this mechanism under physiological conditions is considerable. Most prominent textbooks fail to include this alternative method of serotonin uptake in the brain, and even most neuroscientists are unaware of it. This failure has limited our understanding of a key regulator of serotonergic neurotransmission, impeded research on the potential intracellular actions of serotonin in post-synaptic neurons and glial cells, and may have impeded our understanding of the mechanism by which antidepressant medications reduce depressive symptoms.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Neuronas , Membrana Celular/metabolismo , Encéfalo/metabolismo
4.
Neuroendocrinology ; 104(3): 239-256, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27078860

RESUMEN

Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) ß, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERß-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERß-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERß-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.


Asunto(s)
Hipertensión , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Enfermedades del Ovario/etiología , Núcleo Hipotalámico Paraventricular/patología , Receptores de Estrógenos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Angiotensina II/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Ciclohexenos/toxicidad , Modelos Animales de Enfermedad , Ciclo Estral/efectos de los fármacos , Ciclo Estral/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipertensión/inducido químicamente , Hipertensión/complicaciones , Hipertensión/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica , Neuronas/ultraestructura , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/genética , Compuestos de Vinilo/toxicidad
5.
J Neurosci ; 35(26): 9558-67, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134639

RESUMEN

Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II.


Asunto(s)
Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Proteínas del Tejido Nervioso/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Análisis de Varianza , Animales , Lateralidad Funcional , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/ultraestructura , Óxido Nítrico Sintasa de Tipo I/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/ultraestructura , Pletismografía , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Vasoconstrictores
6.
Neurobiol Dis ; 93: 35-46, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27105708

RESUMEN

Parvalbumin-expressing, fast spiking interneurons have high-energy demands, which make them particularly susceptible to energy impairment. Recent evidence suggests a link between mitochondrial dysfunction in fast spiking cortical interneurons and neuropsychiatric disorders. However, the effect of mitochondrial dysfunction restricted to parvalbumin interneurons has not been directly addressed in vivo. To investigate the consequences of mitochondrial dysfunction in parvalbumin interneurons in vivo, we generated conditional knockout mice with a progressive decline in oxidative phosphorylation by deleting cox10 gene selectively in parvalbumin neurons (PV-Cox10 CKO). Cox10 ablation results in defective assembly of cytochrome oxidase, the terminal enzyme of the electron transfer chain, and leads to mitochondrial bioenergetic dysfunction. PV-Cox10 CKO mice showed a progressive loss of cytochrome oxidase in cortical parvalbumin interneurons. Cytochrome oxidase protein levels were significantly reduced starting at postnatal day 60, and this was not associated with a change in parvalbumin interneuron density. Analyses of intrinsic electrophysiological properties in layer 5 primary somatosensory cortex revealed that parvalbumin interneurons could not sustain their typical high frequency firing, and their overall excitability was enhanced. An increase in both excitatory and inhibitory input onto parvalbumin interneurons was observed in PV-Cox10 CKO mice, resulting in a disinhibited network with an imbalance of excitation/inhibition. Investigation of network oscillations in PV-Cox10 CKO mice, using local field potential recordings in anesthetized mice, revealed significantly increased gamma and theta frequency oscillation power in both medial prefrontal cortex and hippocampus. PV-Cox10 CKO mice did not exhibit muscle strength or gross motor activity deficits in the time frame of the experiments, but displayed impaired sensory gating and sociability. Taken together, these data reveal that mitochondrial dysfunction in parvalbumin interneurons can alter their intrinsic physiology and network connectivity, resulting in behavioral alterations similar to those observed in neuropsychiatric disorders, such as schizophrenia and autism.


Asunto(s)
Neuronas/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Filtrado Sensorial/fisiología , Habilidades Sociales , Animales , Hipocampo/metabolismo , Ratones Transgénicos , Corteza Somatosensorial/metabolismo
7.
Synapse ; 69(3): 148-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25559190

RESUMEN

Renin­angiotensin system overactivity, upregulation of postsynaptic NMDA receptor function, and increased reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) are hallmarks of angiotensin II (AngII)-induced hypertension, which is far more common in young males than in young females. We hypothesize that the sex differences in hypertension are related to differential AngII-induced changes in postsynaptic trafficking of the essential NMDA receptor GluN1 subunit and ROS production in PVN cells expressing angiotensin Type 1a receptor (AT1aR). We tested this hypothesis using slow-pressor (14-day) infusion of AngII (600 ng/kg/min) in mice, which elicits hypertension in males but not in young females. Two-month-old male and female transgenic mice expressing enhanced green fluorescent protein (EGFP) in AT1aR-containing cells were used. In males, but not in females, AngII increased blood pressure and ROS production in AT1aR­EGFP PVN cells at baseline and following NMDA treatment. Electron microscopy showed that AngII increased cytoplasmic and total GluN1­silver-intensified immunogold (SIG) densities and induced a trend toward an increase in near plasmalemmal GluN1­SIG density in AT1aR­EGFP dendrites of males and females. Moreover, AngII decreased dendritic area and diameter in males, but increased dendritic area of small (<1 µm) dendrites and decreased diameter of large (>1 µm) dendrites in females. Fluorescence microscopy revealed that AT1aR and estrogen receptor ß do not colocalize, suggesting that if estrogen is involved, its effect is indirect. These data suggest that the sexual dimorphism in AngII-induced hypertension is associated with sex differences in ROS production in AT1aR-containing PVN cells but not with postsynaptic NMDA receptor trafficking.


Asunto(s)
Angiotensina II/farmacología , Dendritas/metabolismo , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Presión Sanguínea , Dendritas/ultraestructura , Receptor beta de Estrógeno/metabolismo , Femenino , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Masculino , Ratones , Transporte de Proteínas , Receptor de Angiotensina Tipo 1/genética , Sistema Renina-Angiotensina , Factores Sexuales
8.
J Neurosci ; 33(10): 4308-16, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467347

RESUMEN

NADPH oxidase-generated reactive oxygen species (ROS) are highly implicated in the development of angiotensin II (AngII)-dependent hypertension mediated in part through the hypothalamic paraventricular nucleus (PVN). This region contains vasopressin and non-vasopressin neurons that are responsive to cardiovascular dysregulation, but it is not known whether ROS is generated by one or both cell types in response to "slow-pressor" infusion of AngII. We addressed this question using ROS imaging and electron microscopic dual labeling for vasopressin and p47(phox), a cytoplasmic NADPH oxidase subunit requiring mobilization to membranes for the initiation of ROS production. C57BL/6 mice or vasopressin-enhanced green fluorescent protein (VP-eGFP) mice were infused systemically with saline or AngII (600 ng · kg(-1) · min(-1), s.c.) for 2 weeks, during which they slowly developed hypertension. Ultrastructural analysis of the PVN demonstrated p47(phox) immunolabeling in many glial and neuronal profiles, most of which were postsynaptic dendrites. Compared with saline, AngII recipient mice had a significant increase in p47(phox) immunolabeling on endomembranes just beneath the plasmalemmal surface (+42.1 ± 11.3%; p < 0.05) in non-vasopressin dendrites. In contrast, AngII infusion decreased p47(phox) immunolabeling on the plasma membrane (-35.5 ± 16.5%; p < 0.05) in vasopressin dendrites. Isolated non-VP-eGFP neurons from the PVN of AngII-infused mice also showed an increase in baseline ROS production not seen in VP-eGFP neurons. Our results suggest that chronic low-dose AngII may offset the homeostatic control of blood pressure by differentially affecting membrane assembly of NADPH oxidase and ROS production in vasopressin and non-vasopressin neurons located within the PVN.


Asunto(s)
Hipertensión/patología , NADPH Oxidasas/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Especies Reactivas de Oxígeno/metabolismo , Angiotensina II/administración & dosificación , Angiotensina II/efectos adversos , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Esquema de Medicación , Sistemas de Liberación de Medicamentos , Agonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Hipertensión/inducido químicamente , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica , N-Metilaspartato/farmacología , Neuroglía/metabolismo , Neuroglía/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Transfección , Vasoconstrictores/administración & dosificación , Vasoconstrictores/efectos adversos , Vasopresinas/genética , Vasopresinas/metabolismo
9.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38766079

RESUMEN

Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments for pain as a complement to opioid-based treatments. Here we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in male and female mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by CB1 receptors (CB1Rs) within the VTA as VTA CB1R conditional knockout, counteracts JZL184's effects. Conversely, pharmacologically enhancing the levels of the other eCB, anandamide (AEA), by inhibition of fatty acid amide hydrolase (FAAH) has no effect on opioid reward or analgesia. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together these findings reveal that 2-AG counteracts the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.

10.
J Neurosci ; 32(14): 4878-86, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22492044

RESUMEN

Hypertension, a powerful risk factor for stroke and dementia, has damaging effects on the brain and its vessels. In particular, hypertension alters vital cerebrovascular control mechanisms linking neural activity to cerebral perfusion. In experimental models of slow-developing hypertension, free radical signaling in the subfornical organ (SFO), one of the forebrain circumventricular organs, is critical for the hormonal release and sympathetic activation driving the elevation in arterial pressure. However, the contribution of this central mechanism to the cerebrovascular alterations induced by hypertension remains uncertain. We tested the hypothesis that free radical production in the SFO is involved in the alterations in cerebrovascular regulation produced by hypertension. In a mouse model of gradual hypertension induced by chronic administration of subpressor doses of angiotensin II (AngII), suppression of free radicals in the SFO by overexpression of CuZn-superoxide dismutase (CuZnSOD) prevented the alteration in neurovascular coupling and endothelium-dependent responses in somatosensory cortex induced by hypertension. The SFO mediates the dysfunction via two signaling pathways. One involves SFO-dependent activation of the paraventricular hypothalamic nucleus, elevations in plasma vasopressin, upregulation of endothelin-1 in cerebral resistance arterioles and activation of endothelin type A receptors. The other pathway depends on activation of cerebrovascular AngII type 1 (AT1) receptors by AngII. Both pathways mediate vasomotor dysfunction by inducing vascular oxidative stress. The findings implicate for the first time the SFO and its efferent hypothalamic pathways in the cerebrovascular alterations induced by AngII, and identify vasopressin and endothelin-1 as potential therapeutic targets to counteract the devastating effects of hypertension on the brain.


Asunto(s)
Angiotensina II/fisiología , Angiotensina II/toxicidad , Circulación Cerebrovascular/fisiología , Hipertensión/fisiopatología , Órgano Subfornical/fisiopatología , Animales , Circulación Cerebrovascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Técnicas de Transferencia de Gen , Hipertensión/inducido químicamente , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/fisiología , Órgano Subfornical/efectos de los fármacos
11.
Am J Physiol Heart Circ Physiol ; 305(10): H1451-61, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24014678

RESUMEN

Regulation of blood pressure by angiotensin II (ANG II) is a process that involves the reactive oxygen species (ROS) and calcium. We have shown that ANG-II type 1 receptor (AT1R) and prostaglandin E2 (PGE2) type 1 receptors (EP1R) are required in the subfornical organ (SFO) for ROS-mediated hypertension induced by slow-pressor ANG-II infusion. However, the signaling pathway associated with this process remains unclear. We sought to determine mechanisms underlying the ANG II-induced ROS and calcium influx in mouse SFO cells. Ultrastructural studies showed that cyclooxygenase 1 (COX-1) codistributes with AT1R in the SFO, indicating spatial proximity. Functional studies using SFO cells revealed that ANG II potentiated PGE2 release, an effect dependent on AT1R, phospholipase A2 (PLA2) and COX-1. Furthermore, both ANG II and PGE2 increased ROS formation. While the increase in ROS initiated by ANG II, but not PGE2, required the activation of the AT1R/PLA2/COX-1 pathway, both ANG II and PGE2 were dependent on EP1R and Nox2 as downstream effectors. Finally, ANG II potentiated voltage-gated L-type Ca(2+) currents in SFO neurons via the same signaling pathway required for PGE2 production. Blockade of EP1R and Nox2-derived ROS inhibited ANG II and PGE2-mediated Ca(2+) currents. We propose a mechanism whereby ANG II increases COX-1-derived PGE2 through the AT1R/PLA2 pathway, which promotes ROS production by EP1R/Nox2 signaling in the SFO. ANG II-induced ROS are coupled with Ca(2+) influx in SFO neurons, which may influence SFO-mediated sympathoexcitation. Our findings provide the first evidence of a spatial and functional framework that underlies ANG-II signaling in the SFO and reveal novel targets for antihypertensive therapies.


Asunto(s)
Angiotensina II/metabolismo , Señalización del Calcio , Ciclooxigenasa 1/metabolismo , Dinoprostona/metabolismo , Hipertensión/enzimología , Proteínas de la Membrana/metabolismo , Neuronas/enzimología , Especies Reactivas de Oxígeno/metabolismo , Subtipo EP1 de Receptores de Prostaglandina E/metabolismo , Órgano Subfornical/enzimología , Potenciales de Acción , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Presión Sanguínea , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Ciclooxigenasa 1/deficiencia , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Hipertensión/patología , Hipertensión/fisiopatología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Fosfolipasas A2/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Subtipo EP1 de Receptores de Prostaglandina E/deficiencia , Subtipo EP1 de Receptores de Prostaglandina E/genética , Órgano Subfornical/efectos de los fármacos , Órgano Subfornical/fisiopatología , Órgano Subfornical/ultraestructura
12.
Am J Physiol Regul Integr Comp Physiol ; 304(12): R1096-106, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23576605

RESUMEN

Adaptive changes in glutamatergic signaling within the hypothalamic paraventricular nucleus (PVN) may play a role in the neurohumoral dysfunction underlying the hypertension induced by "slow-pressor" ANG II infusion. We hypothesized that these adaptive changes alter production of gp91phox NADPH oxidase (NOX)-derived reactive oxygen species (ROS) or nitric oxide (NO), resulting in enhanced glutamatergic signaling in the PVN. Electron microscopic immunolabeling showed colocalization of NOX2 and N-methyl-D-aspartate receptor (NMDAR) NR1 subunits in PVN dendrites, an effect enhanced (+48%, P < 0.05 vs. saline) in mice receiving ANG II (600 ng·kg⁻¹·min⁻¹ sc). Isolated PVN cells or spinally projecting PVN neurons from ANG II-infused mice had increased levels of ROS at baseline (+40 ± 5% and +57.6 ± 7.7%, P < 0.01 vs. saline) and after NMDA (+24 ± 7% and +17 ± 5.5%, P < 0.01 and P < 0.05 vs. saline). In contrast, ANG II infusion suppressed NO production in PVN cells at baseline (-29.1 ± 5.2%, P < 0.05 vs. saline) and after NMDA (-18.9 ± 2%, P < 0.01 vs. saline), an effect counteracted by NOX inhibition. In whole cell recording of unlabeled and spinally labeled PVN neurons in slices, NMDA induced a larger inward current in ANG II than in saline groups (+79 ± 24% and +82.9 ± 6.6%, P < 0.01 vs. saline), which was reversed by the ROS scavenger MnTBAP and the NO donor S-nitroso-N-acetylpenicillamine (P > 0.05 vs. control). These findings suggest that slow-pressor ANG II increases the association of NR1 with NOX2 in dendrites of PVN neurons, resulting in enhanced NOX-derived ROS and reduced NO during glutamatergic activity. The resulting enhancement of NMDAR activity may contribute to the neurohumoral dysfunction underlying the development of slow-pressor ANG II hypertension.


Asunto(s)
Angiotensina II/efectos adversos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Glicoproteínas de Membrana/metabolismo , N-Metilaspartato/metabolismo , NADPH Oxidasas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Superóxidos/metabolismo , Angiotensina II/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Calcio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Modelos Animales , NADPH Oxidasa 2 , Neuronas/citología , Neuronas/metabolismo , Neuronas/ultraestructura , Óxido Nítrico/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/ultraestructura , Técnicas de Placa-Clamp , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
13.
Synapse ; 67(6): 265-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23345061

RESUMEN

The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is coexpressed not only with the dopamine D1 receptor (D1R), but also with the µ-opioid receptor (µ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing µ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and µ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking, as well as auditory startle and social behaviors that are impaired in multiple psychiatric disorders.


Asunto(s)
Apomorfina/farmacología , Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Filtrado Sensorial/genética , Animales , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Dendritas/metabolismo , Eliminación de Gen , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Patrones de Reconocimiento Fisiológico , Transporte de Proteínas/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores Opioides mu/metabolismo , Conducta Social
14.
J Neurosci ; 31(29): 10506-15, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21775596

RESUMEN

The mechanisms subserving the ability of glucocorticoid signaling within the medial prefrontal cortex (mPFC) to terminate stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis are not well understood. We report that antagonism of the cannabinoid CB(1) receptor locally within the mPFC prolonged corticosterone secretion following cessation of stress in rats. Mice lacking the CB(1) receptor exhibited a similar prolonged response to stress. Exposure of rats to stress produced an elevation in the endocannabinoid 2-arachidonoylglycerol within the mPFC that was reversed by pretreatment with the glucocorticoid receptor antagonist RU-486 (20 mg/kg). Electron microscopic and electrophysiological data demonstrated the presence of CB(1) receptors in inhibitory-type terminals impinging upon principal neurons within layer V of the prelimbic region of the mPFC. Bath application of corticosterone (100 nm) to prefrontal cortical slices suppressed GABA release onto principal neurons in layer V of the prelimbic region, when examined 1 h later, which was prevented by application of a CB(1) receptor antagonist. Collectively, these data demonstrate that the ability of stress-induced glucocorticoid signaling within mPFC to terminate HPA axis activity is mediated by a local recruitment of endocannabinoid signaling. Endocannabinoid activation of CB(1) receptors decreases GABA release within the mPFC, likely increasing the outflow of the principal neurons of the prelimbic region to contribute to termination of the stress response. These data support a model in which endocannabinoid signaling links glucocorticoid receptor engagement to activation of corticolimbic relays that inhibit corticosterone secretion.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Glicéridos/metabolismo , Transducción de Señal/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corticosterona/farmacología , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Endocannabinoides , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Antagonistas de Hormonas/farmacología , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mifepristona/farmacología , Técnicas de Placa-Clamp/métodos , Piperidinas/farmacología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/deficiencia , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Ácido gamma-Aminobutírico/metabolismo
15.
Am J Physiol Regul Integr Comp Physiol ; 302(9): R1076-83, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22378773

RESUMEN

The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Óxido Nítrico/biosíntesis , Receptores de Angiotensina/metabolismo , Núcleo Solitario/metabolismo , Animales , Células Cultivadas , Radicales Libres/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley
16.
J Neurosci ; 30(36): 12103-12, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826673

RESUMEN

Chronic intermittent hypoxia (CIH) is a concomitant of sleep apnea that produces a slowly developing chemosensory-dependent blood pressure elevation ascribed in part to NMDA receptor-dependent plasticity and reduced nitric oxide (NO) signaling in the carotid body. The hypothalamic paraventricular nucleus (PVN) is responsive to hypoxic stress and also contains neurons that express NMDA receptors and neuronal nitric oxide synthase (nNOS). We tested the hypothesis that extended (35 d) CIH results in a decrease in the surface/synaptic availability of the essential NMDA NR1 subunit in nNOS-containing neurons and NMDA-induced NO production in the PVN of mice. As compared with controls, the 35 d CIH-exposed mice showed a significant increase in blood pressure and an increased density of NR1 immunogold particles located in the cytoplasm of nNOS-containing dendrites. Neither of these between-group differences was seen after 14 d, even though there was already a reduction in the NR1 plasmalemmal density at this time point. Patch-clamp recording of PVN neurons in slices showed a significant reduction in NMDA currents after either 14 or 35 d exposure to CIH compared with sham controls. In contrast, NO production, as measured by the NO-sensitive fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein, was suppressed only in the 35 d CIH group. We conclude that CIH produces a reduction in the surface/synaptic targeting of NR1 in nNOS neurons and decreases NMDA receptor-mediated currents in the PVN before the emergence of hypertension, the development of which may be enabled by suppression of NO signaling in this brain region.


Asunto(s)
Hipoxia/patología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Óxido Nítrico/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Arginina/farmacología , Análisis de los Gases de la Sangre/métodos , Presión Sanguínea/fisiología , Óxidos N-Cíclicos/farmacología , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Depuradores de Radicales Libres/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hipoxia/fisiopatología , Imidazoles/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión/métodos , N-Metilaspartato/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo I/ultraestructura , Núcleo Hipotalámico Paraventricular/patología , Núcleo Hipotalámico Paraventricular/ultraestructura , Receptores de N-Metil-D-Aspartato/ultraestructura , S-Nitroso-N-Acetilpenicilamina/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vasopresinas/metabolismo
17.
Synapse ; 65(1): 8-20, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20506149

RESUMEN

Activation of the corticotropin-releasing factor-1 (CRF-1) receptor in the anterolateral BNST (BSTal), a key subdivision of the extended amygdala, elicits opiate-seeking behavior exacerbated by stress. However, it is unknown whether the presence of CRF-1 affects expression of the µ-opioid receptor (µ-OR) in the many GABAergic BSTal neurons implicated in the stress response. We hypothesized that deletion of the CRF-1 receptor gene would alter the density and/or subcellular distribution of µ-ORs in GABAergic neurons of the BSTal. We used electron microscopy to quantitatively examine µ-OR immunogold and γ-aminobutyric acid (GABA) immunoperoxidase labeling in the BSTal of CRFr-1 knockout (KO) compared to wild-type (WT) mice. To assess regional specificity, we examined µ-OR distribution in dorsal striatum. The µ-ORs in each region were predominantly localized in dendrites, many of which were GABA-immunoreactive. Significantly, more cytoplasmic µ-OR gold particles per dendritic area were observed selectively in GABA-containing dendrites of the BSTal, but not of the dorsal striatum, in KO compared to WT mice. In both regions, however, significantly fewer GABA-immunoreactive axon terminals were present in KO compared to WT mice. Our results suggest that the absence of CRF-1 results in enhanced expression and/or dendritic trafficking of µ-ORs in inhibitory BSTal neurons. They also suggest that the expression of CRF-1 is a critical determinant of the availability of GABA in functionally diverse brain regions. These findings underscore the complex interplay between CRF, opioid, and GABA systems in limbic and striatal regions and have implications for the role of CRF-1 in influencing the pharmacological effects of opiates active at µ-ORs.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Dendritas/fisiología , Neuronas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores Opioides mu/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/ultraestructura , Animales , Dendritas/ultraestructura , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Neuronas/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Receptores de Hormona Liberadora de Corticotropina/metabolismo
18.
Synapse ; 65(8): 827-31, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21445945

RESUMEN

Cortical and striatal regions of the brain contain high levels of the cannabinoid-1 (CB1) receptor, the central neuronal mediator of activity-dependent synaptic plasticity evoked by endocannabinoids. The expression levels of parvalbumin, a calcium-binding protein found in fast-spiking interneurons of both regions, may be controlled in part by synaptic activity during critical periods of development. However, there is currently no evidence that CB1 receptor expression affects parvalbumin levels in either cortical or striatal interneurons. To assess this possibility, we examined parvalbumin immunoreactivity in the dorsolateral striatum, primary motor cortex (M1), and prefrontal cortex (PFC) of CB1 knockout and wild-type C57/BL6 mice. Quantitative densitometry showed a significant decrease in parvalbumin immunoreactivity within individual neurons in each of these regions of CB1 knockout mice relative to controls. A significantly lower density (number of cells per unit area) of parvalbumin-labeled neurons was observed in the striatum, but not the cortical regions of CB1 knockout mice. These findings suggest that CB1 receptor deletion may elicit a compensatory mechanism for network homeostasis affecting parvalbumin-containing cortical and striatal interneurons.


Asunto(s)
Encéfalo/metabolismo , Parvalbúminas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptor Cannabinoide CB1/deficiencia
19.
Synapse ; 65(12): 1350-67, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21858872

RESUMEN

The alpha-7 nicotinic acetylcholine receptor (α7nAChR) and the dopamine D(2) receptor (D(2) R) are both implicated in attentional processes and cognition, mediated in part through the prefrontal cortex (PFC). We examined the dual electron microscopic immunolabeling of α7nAChR and either D(2) R or the vesicular acetylcholine transporter (VAChT) in rodent PFC to assess convergent functional activation sites. Immunoreactivity (ir) for α7nAChR and/or D(2) R was seen in the same as well as separate neuronal and glial profiles. At least half of the dually labeled profiles were somata and dendrites, while most labeled axon terminals expressed only D(2) R-ir. The D(2) R-labeled terminals were without synaptic specializations or formed inhibitory or excitatory-type synapses with somatodendritic profiles, some of which expressed the α7nAChR and/or D(2) R. Astrocytic glial processes comprised the majority of nonsomatodendritic α7nAChR or α7nAChR and D(2) R-labeled profiles. Glial processes containing α7nAChR-ir were frequently located near VAChT-labeled terminals and also showed perisynaptic and perivascular associations. We conclude that in rodent PFC α7nACh and D(2) R activation can dually modulate (1) postsynaptic dendritic responses within the same or separate but synaptically linked neurons in which the D(2) R has the predominately presynaptic distribution, and (2) astrocytic signaling that may be crucial for synaptic transmission and functional hyperemia.


Asunto(s)
Astrocitos/metabolismo , Dendritas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Nicotínicos/metabolismo , Membranas Sinápticas/metabolismo , Acetilcolina/fisiología , Animales , Astrocitos/ultraestructura , Comunicación Celular/fisiología , Dendritas/ultraestructura , Dopamina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica/métodos , Corteza Prefrontal/citología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
20.
IBRO Neurosci Rep ; 11: 144-155, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34667972

RESUMEN

Long-term cannabis use during adolescence has deleterious effects in brain that are largely ascribed to the activation of cannabinoid-1 receptors (CB1Rs) by delta-9-tetrahydrocannabinol (∆9-THC), the primary psychoactive compound in marijuana. Systemic administration of ∆9-THC inhibits acetylcholine release in the prelimbic-prefrontal cortex (PL-PFC). In turn, PL-PFC acetylcholine plays a role in executive activities regulated by CB1R-targeting endocannabinoids, which are generated by cholinergic stimulation of muscarinic-1 receptors (M1Rs). However, the long-term effects of chronic administration of increasing doses of ∆9-THC in adolescent males on the distribution and function of M1 and/or CB1 receptors in the PL-PFC remains unresolved. We used C57BL\6J male mice pre-treated with vehicle or escalating daily doses of ∆9-THC to begin filling this gap. Electron microscopic immunolabeling showed M1R-immunogold particles on plasma membranes and in association with cytoplasmic membranes in varying sized dendrites and dendritic spines. These dendritic profiles received synaptic inputs from unlabeled, CB1R- and/or M1R-labeled axon terminals in the PL-PFC of both treatment groups. However, there was a size-dependent decrease in total (plasmalemmal and cytoplasmic) M1R gold particles in small dendrites within the PL-PFC of mice receiving ∆9-THC. Whole cell current-clamp recording in PL-PFC slice preparations further revealed that adolescent pretreatment with ∆9-THC attenuates the hyperpolarization and increases the firing rate produced by local muscarinic stimulation. Repeated administration of ∆9-THC during adolescence also reduced spontaneous alternations in a Y-maze paradigm designed for measures of PFC-dependent memory function in adult mice. Our results provide new information implicating M1Rs in cortical dysfunctions resulting from adolescent abuse of marijuana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA