Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurophotonics ; 11(3): 034311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38867758

RESUMEN

Significance: Stimulated emission depletion (STED) is a powerful super-resolution microscopy technique that can be used for imaging live cells. However, the high STED laser powers can cause significant photobleaching and sample damage in sensitive biological samples. The dynamic intensity minimum (DyMIN) technique turns on the STED laser only in regions of the sample where there is fluorescence signal, thus saving significant sample photobleaching. The reduction in photobleaching allows higher resolution images to be obtained and longer time-lapse imaging of live samples. A stand-alone module to perform DyMIN is not available commercially. Aim: In this work, we developed an open-source design to implement three-step DyMIN on a STED microscope and demonstrated reduced photobleaching for timelapse imaging of beads, cells, and tissue. Approach: The DyMIN system uses a fast multiplexer circuit and inexpensive field-programmable gate array controlled by Labview software that operates as a stand-alone module for a STED microscope. All software and circuit diagrams are freely available. Results: We compared time-lapse images of bead samples using our custom DyMIN system to conventional STED and recorded a ∼ 46 % higher signal when using DyMIN after a 50-image sequence. We further demonstrated the DyMIN system for time-lapse STED imaging of live cells and brain tissue slices. Conclusions: Our open-source DyMIN system is an inexpensive add-on to a conventional STED microscope that can reduce photobleaching. The system can significantly improve signal to noise for dynamic time-lapse STED imaging of live samples.

2.
Proc Natl Acad Sci U S A ; 107(48): 20750-5, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21071677

RESUMEN

Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Corazón/crecimiento & desarrollo , Chaperonas Moleculares/metabolismo , Desarrollo de Músculos/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo , Proliferación Celular , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/patología , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Músculo Esquelético/embriología , Músculo Esquelético/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especificidad de Órganos/genética , Organogénesis/genética , Unión Proteica , Factores de Transcripción/genética
3.
Nat Genet ; 31(1): 25-32, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11923873

RESUMEN

Many transcription factors regulate specific temporal-spatial events during cardiac differentiation; however, the mechanisms that regulate such events are largely unknown. Using a modified subtractive hybridization method to identify specific genes that influence early cardiac development, we found that Bop is expressed specifically in cardiac and skeletal muscle precursors before differentiation of these lineages. Bop encodes a protein containing MYND and SET domains, which have been shown to regulate transcription by mediating distinct chromatin modifications. We show that m-Bop is a histone deacetylase-dependent transcriptional repressor. Targeted deletion of Bop in mice disrupted maturation of ventricular cardiomyocytes and interfered with formation of the right ventricle. Normal expression of Hand2, a transcription factor essential for right ventricular development, in cardiomyocyte precursors is dependent upon m-Bop. These results indicate that m-Bop is essential for cardiomyocyte differentiation and cardiac morphogenesis.


Asunto(s)
Proteínas Musculares , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Factores de Transcripción/química , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Línea Celular , Embrión de Pollo , Clonación Molecular , Proteínas de Unión al ADN , Corazón/embriología , Corazón/crecimiento & desarrollo , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Histona Desacetilasas/metabolismo , Hibridación in Situ , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocardio/citología , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Transfección
4.
PLoS One ; 10(3): e0121765, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803368

RESUMEN

Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense-a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Corazón/crecimiento & desarrollo , Proteínas Musculares/metabolismo , Miocardio/citología , Miocardio/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Chlorocebus aethiops , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Metilación , Ratones , Datos de Secuencia Molecular , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba
5.
Cell ; 123(2): 347-58, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16239150

RESUMEN

Rhythmic cardiac contractions depend on the organized propagation of depolarizing and repolarizing wavefronts. Repolarization is spatially heterogeneous and depends largely on gradients of potassium currents. Gradient disruption in heart disease may underlie susceptibility to fatal arrhythmias, but it is not known how this gradient is established. We show that, in mice lacking the homeodomain transcription factor Irx5, the cardiac repolarization gradient is abolished due to increased Kv4.2 potassium-channel expression in endocardial myocardium, resulting in a selective increase of the major cardiac repolarization current, I(to,f), and increased susceptibility to arrhythmias. Myocardial Irx5 is expressed in a gradient opposite that of Kv4.2, and Irx5 represses Kv4.2 expression by recruiting mBop, a cardiac transcriptional repressor. Thus, an Irx5 repressor gradient negatively regulates potassium-channel-gene expression in the heart, forming an inverse I(to,f) gradient that ensures coordinated cardiac repolarization while also preventing arrhythmias.


Asunto(s)
Potenciales de Acción/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Función Ventricular Izquierda/fisiología , Función Ventricular , Potenciales de Acción/fisiología , Animales , Western Blotting , Cruzamientos Genéticos , Perros , Electrocardiografía , Electrofisiología , Endocardio/citología , Endocardio/fisiología , Genes Reporteros , Ventrículos Cardíacos/citología , Heterocigoto , Homocigoto , Inmunohistoquímica , Luciferasas/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Pericardio/citología , Pericardio/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/fisiología , Pruebas de Precipitina , Proteínas/análisis , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA