Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Emerg Infect Dis ; 26(4): 793-795, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32186503

RESUMEN

We developed a carbapenemase test based on the ability of imipenem to inhibit noncarbapenemase ß-lactamases. The test uses bacterial isolates with a fluorescent ß-lactamase substrate, producing objective results with 100% sensitivity and specificity in 10 minutes. The assay is inexpensive and consists of only 1 mixing step.


Asunto(s)
Proteínas Bacterianas , beta-Lactamasas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Sensibilidad y Especificidad , beta-Lactamasas/genética
2.
J Nanobiotechnology ; 18(1): 1, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898555

RESUMEN

BACKGROUND: Photoimmunotherapy involves targeted delivery of photosensitizers via an antibody conjugate (i.e., photoimmunoconjugate, PIC) followed by light activation for selective tumor killing. The trade-off between PIC selectivity and PIC uptake is a major drawback limiting the efficacy of photoimmunotherapy. Despite ample evidence showing that photoimmunotherapy is most effective when combined with chemotherapy, the design of nanocarriers to co-deliver PICs and chemotherapy drugs remains an unmet need. To overcome these challenges, we developed a novel photoimmunoconjugate-nanoliposome (PIC-Nal) comprising of three clinically used agents: anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody cetuximab (Cet), benzoporphyrin derivative (BPD) photosensitizer, and irinotecan (IRI) chemotherapy. RESULTS: The BPD photosensitizers were first tethered to Cet at a molar ratio of 6:1 using carbodiimide chemistry to form PICs. Conjugation of PICs onto nanoliposome irinotecan (Nal-IRI) was facilitated by copper-free click chemistry, which resulted in monodispersed PIC-Nal-IRI with an average size of 158.8 ± 15.6 nm. PIC-Nal-IRI is highly selective against EGFR-overexpressing epithelial ovarian cancer cells with 2- to 6-fold less accumulation in low EGFR expressing cells. Successful coupling of PIC onto Nal-IRI enhanced PIC uptake and photoimmunotherapy efficacy by up to 30% in OVCAR-5 cells. Furthermore, PIC-Nal-IRI synergistically reduced cancer viability via a unique three-way mechanism (i.e., EGFR downregulation, mitochondrial depolarization, and DNA damage). CONCLUSION: It is increasingly evident that the most effective therapies for cancer will involve combination treatments that target multiple non-overlapping pathways while minimizing side effects. Nanotechnology combined with photochemistry provides a unique opportunity to simultaneously deliver and activate multiple drugs that target all major regions of a cancer cell-plasma membrane, cytoplasm, and nucleus. PIC-Nal-IRI offers a promising strategy to overcome the selectivity-uptake trade-off, improve photoimmunotherapy efficacy, and enable multi-tier cancer targeting. Controllable drug compartmentalization, easy surface modification, and high clinical relevance collectively make PIC-Nal-IRI extremely valuable and merits further investigations in living animals.


Asunto(s)
Inmunoconjugados/uso terapéutico , Irinotecán/uso terapéutico , Nanopartículas/química , Neoplasias/terapia , Fototerapia , Línea Celular Tumoral , Terapia Combinada , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/química , Irinotecán/química , Liposomas
3.
Small ; : e1800236, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29962083

RESUMEN

The past three decades have witnessed notable advances in establishing photosensitizer-antibody photo-immunoconjugates for photo-immunotherapy and imaging of tumors. Photo-immunotherapy minimizes damage to surrounding healthy tissue when using a cancer-selective photo-immunoconjugate, but requires a threshold intracellular photosensitizer concentration to be effective. Delivery of immunoconjugates to the target cells is often hindered by I) the low photosensitizer-to-antibody ratio of photo-immunoconjugates and II) the limited amount of target molecule presented on the cell surface. Here, a nanoengineering approach is introduced to overcome these obstacles and improve the effectiveness of photo-immunotherapy and imaging. Click chemistry coupling of benzoporphyrin derivative (BPD)-Cetuximab photo-immunoconjugates onto FKR560 dye-containing poly(lactic-co-glycolic acid) nanoparticles markedly enhances intracellular photo-immunoconjugate accumulation and potentiates light-activated photo-immunotoxicity in ovarian cancer and glioblastoma. It is further demonstrated that co-delivery and light activation of BPD and FKR560 allow longitudinal fluorescence tracking of photoimmunoconjugate and nanoparticle in cells. Using xenograft mouse models of epithelial ovarian cancer, intravenous injection of photo-immunoconjugated nanoparticles doubles intratumoral accumulation of photo-immunoconjugates, resulting in an enhanced photoimmunotherapy-mediated tumor volume reduction, compared to "standard" immunoconjugates. This generalizable "carrier effect" phenomenon is attributed to the successful incorporation of photo-immunoconjugates onto a nanoplatform, which modulates immunoconjugate delivery and improves treatment outcomes.

4.
Methods Mol Biol ; 2451: 49-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505009

RESUMEN

Numerous cancer models have been developed to investigate the effects of mechanical stress on the biology of cells. Here we describe a protocol to fabricate a perfusion model to culture 3-dimensional (3D) ovarian cancer nodules under constant flow. The modular design of this model allows for a wide range of treatment regimens and combinations, including PDT and chemotherapy. Finally, methods for a number of readouts are detailed, allowing researchers to investigate a variety of biological and cytotoxic parameters related to mechanical stress and therapeutic modalities.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Fotoquimioterapia , Antineoplásicos/farmacología , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Perfusión/métodos
5.
Cancers (Basel) ; 13(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830934

RESUMEN

Despite substantial drug development efforts, pancreatic adenocarcinoma (PDAC) remains a difficult disease to treat, and surgical resection is the only potentially curative option. Unfortunately, 80% of patients are ineligible for surgery due to the presence of invasive disease and/or distant metastases at the time of diagnosis. Treatment strategies geared towards reclassifying these patients as surgical candidates by reducing metastatic burden represents the most promising approach to improve long-term survival. We describe a photodynamic therapy (PDT) based approach that, in combination with the first-line chemotherapeutic nab-paclitaxel, effectively addresses distant metastases in three separate orthotopic PDAC models in immunodeficient mice. In addition to effectively controlling local tumor growth, PDT plus nab-paclitaxel primes the tumor to elicit systemic effects and reduce or abrogate metastases. This combination dramatically inhibits (up to 100%) the eventual development of metastases in models of early stage PDAC, and completely eliminates metastasis in 55% of animals with already established distant disease in late-stage models. Our findings suggest that this light activation process initiates local biological and/or physiological changes within the tumor microenvironment that can be leveraged to treat both localized and distant disease, and potentially reclassify patients with previously inoperable disease as surgical candidates.

6.
Mol Cancer Ther ; 19(6): 1308-1319, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220968

RESUMEN

Patients with cancer often confront the decision of whether to continue high-dose chemotherapy at the expense of cumulative toxicities. Reducing the dose of chemotherapy regimens while preserving efficacy is sorely needed to preserve the performance status of these vulnerable patients, yet has not been prioritized. Here, we introduce a dual pronged approach to modulate the microenvironment of desmoplastic pancreatic tumors and enable significant dose deescalation of the FDA-approved chemotherapeutic nanoliposomal irinotecan (nal-IRI) without compromising tumor control. We demonstrate that light-based photodynamic priming (PDP) coupled with vitamin D3 receptor (VDR) activation within fibroblasts increases intratumoral nal-IRI accumulation and suppresses protumorigenic CXCL12/CXCR7 crosstalk. Combined photodynamic and biochemical modulation of the tumor microenvironment enables a 75% dose reduction of nal-IRI while maintaining treatment efficacy, resulting in improved tolerability. Modifying the disease landscape to increase the susceptibility of cancer, via preferentially modulating fibroblasts, represents a promising and relatively underexplored strategy to enable dose deescalation. The approach presented here, using a combination of three clinically available therapies with nonoverlapping toxicities, can be rapidly translated with minimal modification to treatment workflow, and challenges the notion that significant improvements in chemotherapy efficacy can only be achieved at the expense of increased toxicity.


Asunto(s)
Antineoplásicos/farmacología , Calcitriol/análogos & derivados , Carcinoma Ductal Pancreático/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/tratamiento farmacológico , Fotoquimioterapia , Receptores de Calcitriol/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Calcitriol/farmacología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/radioterapia , Proliferación Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Fármacos Dermatológicos/farmacología , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/radioterapia , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Calcitriol/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Clin Med ; 9(4)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231055

RESUMEN

A key reason for the persistently grim statistics associated with metastatic ovarian cancer is resistance to conventional agents, including platinum-based chemotherapies. A major source of treatment failure is the high degree of genetic and molecular heterogeneity, which results from significant underlying genomic instability, as well as stromal and physical cues in the microenvironment. Ovarian cancer commonly disseminates via transcoelomic routes to distant sites, which is associated with the frequent production of malignant ascites, as well as the poorest prognosis. In addition to providing a cell and protein-rich environment for cancer growth and progression, ascitic fluid also confers physical stress on tumors. An understudied area in ovarian cancer research is the impact of fluid shear stress on treatment failure. Here, we investigate the effect of fluid shear stress on response to platinum-based chemotherapy and the modulation of molecular pathways associated with aggressive disease in a perfusion model for adherent 3D ovarian cancer nodules. Resistance to carboplatin is observed under flow with a concomitant increase in the expression and activation of the epidermal growth factor receptor (EGFR) as well as downstream signaling members mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). The uptake of platinum by the 3D ovarian cancer nodules was significantly higher in flow cultures compared to static cultures. A downregulation of phospho-focal adhesion kinase (p-FAK), vinculin, and phospho-paxillin was observed following carboplatin treatment in both flow and static cultures. Interestingly, low-dose anti-EGFR photoimmunotherapy (PIT), a targeted photochemical modality, was found to be equally effective in ovarian tumors grown under flow and static conditions. These findings highlight the need to further develop PIT-based combinations that target the EGFR, and sensitize ovarian cancers to chemotherapy in the context of flow-induced shear stress.

8.
Cancers (Basel) ; 11(12)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783651

RESUMEN

Ovarian cancer (OvCa) is the leading cause of gynecological cancer-related deaths in the United States, with five-year survival rates of 15-20% for stage III cancers and 5% for stage IV cancers. The standard of care for advanced OvCa involves surgical debulking of disseminated disease in the peritoneum followed by chemotherapy. Despite advances in treatment efficacy, the prognosis for advanced stage OvCa patients remains poor and the emergence of chemoresistant disease localized to the peritoneum is the primary cause of death. Therefore, a complementary modality that is agnostic to typical chemo- and radio-resistance mechanisms is urgently needed. Photodynamic therapy (PDT), a photochemistry-based process, is an ideal complement to standard treatments for residual disease. The confinement of the disease in the peritoneal cavity makes it amenable for regionally localized treatment with PDT. PDT involves photochemical generation of cytotoxic reactive molecular species (RMS) by non-toxic photosensitizers (PSs) following exposure to non-harmful visible light, leading to localized cell death. However, due to the complex topology of sensitive organs in the peritoneum, diffuse intra-abdominal PDT induces dose-limiting toxicities due to non-selective accumulation of PSs in both healthy and diseased tissue. In an effort to achieve selective damage to tumorous nodules, targeted PS formulations have shown promise to make PDT a feasible treatment modality in this setting. This targeted strategy involves chemical conjugation of PSs to antibodies, referred to as photoimmunoconjugates (PICs), to target OvCa specific molecular markers leading to enhanced therapeutic outcomes while reducing off-target toxicity. In light of promising results of pilot clinical studies and recent preclinical advances, this review provides the rationale and methodologies for PIC-based PDT, or photo-immunotherapy (PIT), in the context of OvCa management.

9.
Photochem Photobiol ; 95(1): 378-386, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30229942

RESUMEN

Longitudinal monitoring of tumor size in vivo can provide important biological information about disease progression and treatment efficacy that is not captured by other modes of quantification. Ultrasound enables high-throughput evaluation of orthotopic mouse models via fast acquisition of three-dimensional tumor images and calculation of volume with a reasonable degree of accuracy. Herein, we compare orthotopic pancreatic tumor volume measurements determined by ultrasound with volume measured by calipers and tumor weight, and found strong correlations between the three modalities over a large range of tumor sizes, suggesting ultrasound can accurately quantify tumor volumes in this model. Furthermore, we demonstrate the unique ability of longitudinal treatment monitoring to reveal a tumor size-dependent response to Benzoporphyrin Derivative photodynamic therapy (BPD-PDT) and irinotecan. Small tumors (5-35 mm3 ) were found to respond well to a single round of PDT, while large tumors (35-65 mm3 ) showed no response to the same treatment. These results highlight the role that tumor size can play in preclinical interpretation of treatment response and more generally suggest that careful evaluation of subtle biological features such as this must be carefully considered in order to grant a more comprehensive understanding of disease biology in vivo.


Asunto(s)
Antineoplásicos/uso terapéutico , Irinotecán/uso terapéutico , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Fotoquimioterapia , Inhibidores de Topoisomerasa I/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/patología , Reproducibilidad de los Resultados , Ultrasonografía , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Mol Cancer Ther ; 17(2): 508-520, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29167313

RESUMEN

Mechanism-inspired drug repurposing that augments standard treatments offers a cost-effective and rapid route toward addressing the burgeoning problem of plateauing of effective therapeutics for drug-resistant micrometastases. We show that the antibiotic minocycline, by its ability to minimize DNA repair via reduced expression of tyrosyl-DNA phosphodiesterase-1 (Tdp1), removes a key process attenuating the efficacy of irinotecan, a frequently used chemotherapeutic against metastatic disease. Moreover, minocycline and irinotecan cooperatively mitigate each other's undesired cytokine inductions of VEGF and IL8, respectively, thereby reinforcing the benefits of each modality. These mechanistic interactions result in synergistic enhancement of irinotecan-induced platinum-resistant epithelial ovarian cancer cell death, reduced micrometastases in the omenta and mesentery by >75%, and an extended overall survival by 50% in a late-stage peritoneal carcinomatosis mouse model. Economic incentives and easy translatability make the repurposing of minocycline as a reinforcer of the topoisomerase class of chemotherapeutics extremely valuable and merits further investigations. Mol Cancer Ther; 17(2); 508-20. ©2017 AACR.


Asunto(s)
Minociclina/uso terapéutico , Neoplasias Peritoneales/tratamiento farmacológico , Inhibidores de Topoisomerasa/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Minociclina/farmacología , Neoplasias Peritoneales/patología , Inhibidores de Topoisomerasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA