Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(51): 32722-32730, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293415

RESUMEN

Nitrogen (N) is an essential macronutrient for microalgae, influencing their productivity, composition, and growth dynamics. Despite the dramatic consequences of N starvation, many free-living and endosymbiotic microalgae thrive in N-poor and N-fluctuating environments, giving rise to questions about the existence and nature of their long-term N reserves. Our understanding of these processes requires a unequivocal identification of the N reserves in microalgal cells as well as their turnover kinetics and subcellular localization. Herein, we identified crystalline guanine as the enigmatic large-capacity and rapid-turnover N reserve of microalgae. The identification was unambiguously supported by confocal Raman, fluorescence, and analytical transmission electron microscopies as well as stable isotope labeling. We discovered that the storing capacity for crystalline guanine by the marine dinoflagellate Amphidiniumcarterae was sufficient to support N requirements for several new generations. We determined that N reserves were rapidly accumulated from guanine available in the environment as well as biosynthesized from various N-containing nutrients. Storage of exogenic N in the form of crystalline guanine was found broadly distributed across taxonomically distant groups of microalgae from diverse habitats, from freshwater and marine free-living forms to endosymbiotic microalgae of reef-building corals (Acropora millepora, Euphyllia paraancora). We propose that crystalline guanine is the elusive N depot that mitigates the negative consequences of episodic N shortage. Guanine (C5H5N5O) may act similarly to cyanophycin (C10H19N5O5) granules in cyanobacteria. Considering the phytoplankton nitrogen pool size and dynamics, guanine is proposed to be an important storage form participating in the global N cycle.


Asunto(s)
Guanina/metabolismo , Microalgas/química , Microalgas/metabolismo , Nitrógeno/metabolismo , Animales , Antozoos , Regiones Árticas , Cristalización , Dinoflagelados/química , Dinoflagelados/metabolismo , Ecosistema , Guanina/química , Cinética , Microscopía Electrónica de Transmisión , Microscopía Óptica no Lineal/métodos , Simbiosis , Clima Tropical
2.
Anal Chem ; 92(18): 12304-12311, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32815709

RESUMEN

Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.


Asunto(s)
Bacteriófagos/química , Pinzas Ópticas , Staphylococcus aureus/química , Espectrometría Raman
3.
J Phycol ; 56(1): 217-232, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31610035

RESUMEN

The green algal genus Cylindrocystis is widespread in various types of environments, including extreme habitats. However, very little is known about its diversity, especially in polar regions. In the present study, we isolated seven new Cylindrocystis-like strains from terrestrial and freshwater habitats in Svalbard (High Arctic). We aimed to compare the new isolates on a molecular (rbcL and 18S rDNA), morphological (light and confocal laser scanning microscopy), and cytological (Raman microscopy) basis. Our results demonstrated that the Arctic Cylindrocystis were not of a monophyletic origin and that the studied strains clustered within two clades (tentatively named the soil and freshwater/glacier clades) and four separate lineages. Morphological data (cell size, shape, and chloroplast morphology) supported the presence of several distinct taxa among the new isolates. Moreover, the results showed that the Arctic Cylindrocystis strains were closely related to strains originating from the temperate zone, indicating high ecological versatility and successful long-distance dispersal of the genus. Large amounts of inorganic polyphosphate (polyP) grains were detected within the chloroplasts of the cultured Arctic Cylindrocystis strains, suggesting effective luxury uptake of phosphorus. Additionally, various intracellular structures were identified using Raman microscopy and cytochemical and fluorescent staining. This study represents the first attempt to combine molecular, morphological, ecological, and biogeographical data for Arctic Cylindrocystis. Our novel cytological observations partially explain the success of Cylindrocystis-like microalgae in polar regions.


Asunto(s)
Chlorophyta , Streptophyta , Regiones Árticas , Filogenia , Polifosfatos , Svalbard
4.
BMC Genomics ; 17: 319, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27142620

RESUMEN

BACKGROUND: Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. RESULTS: We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. CONCLUSIONS: The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.


Asunto(s)
Chlorophyta/metabolismo , Eucariontes/metabolismo , Hierro/metabolismo , Fitoplancton/metabolismo , Adaptación Biológica , Chlorophyta/clasificación , Chlorophyta/genética , Análisis por Conglomerados , Cobre/metabolismo , Eucariontes/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de la radiación , Secuenciación de Nucleótidos de Alto Rendimiento , Homeostasis , Compuestos de Hierro/metabolismo , Oxidación-Reducción , Fotoperiodo , Filogenia , Fitoplancton/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico , Transcriptoma
5.
mBio ; 14(1): e0327922, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36645306

RESUMEN

Barium and strontium are often used as proxies of marine productivity in palaeoceanographic reconstructions of global climate. However, long-searched biological drivers for such correlations remain unknown. Here, we report that taxa within one of the most abundant groups of marine planktonic protists, diplonemids (Euglenozoa), are potent accumulators of intracellular barite (BaSO4), celestite (SrSO4), and strontiobarite (Ba,Sr)SO4. In culture, Namystinia karyoxenos accumulates Ba2+ and Sr2+ 42,000 and 10,000 times higher than the surrounding medium, forming barite and celestite representing 90% of the dry weight, the greatest concentration in biomass known to date. As heterotrophs, diplonemids are not restricted to the photic zone, and they are widespread in the oceans in astonishing abundance and diversity, as their distribution correlates with environmental particulate barite and celestite, prevailing in the mesopelagic zone. We found diplonemid predators, the filter-feeding zooplankton that produces fecal pellets containing the undigested celestite from diplonemids, facilitating its deposition on the seafloor. To the best of our knowledge, evidence for diplonemid biomineralization presents the strongest explanation for the occurrence of particulate barite and celestite in the marine environment. Both structures of the crystals and their variable chemical compositions found in diplonemids fit the properties of environmentally sampled particulate barite and celestite. Finally, we propose that diplonemids, which emerged during the Neoproterozoic era, qualify as impactful players in Ba2+/Sr2+ cycling in the ocean that has possibly contributed to sedimentary rock formation over long geological periods. IMPORTANCE We have identified that diplonemids, an abundant group of marine planktonic protists, accumulate conspicuous amounts of Sr2+ and Ba2+ in the form of intracellular barite and celestite crystals, in concentrations that greatly exceed those of the most efficient Ba/Sr-accumulating organisms known to date. We propose that diplonemids are potential players in Ba2+/Sr2+ cycling in the ocean and have possibly contributed to sedimentary rock formation over long geological periods. These organisms emerged during the Neoproterozoic era (590 to 900 million years ago), prior to known coccolithophore carbonate biomineralization (~200 million years ago). Based on reported data, the distribution of diplonemids in the oceans is correlated with the occurrence of particulate barite and celestite. Finally, diplonemids may provide new insights into the long-questioned biogenic origin of particulate barite and celestite and bring more understanding of the observed spatial-temporal correlation of the minerals with marine productivity used in reconstructions of past global climate.


Asunto(s)
Sulfato de Bario , Estroncio , Bario , Océanos y Mares , Plancton , Minerales
6.
ISME J ; 16(9): 2290-2294, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35672454

RESUMEN

Despite the widespread occurrence of intracellular crystalline inclusions in unicellular eukaryotes, scant attention has been paid to their composition, functions, and evolutionary origins. Using Raman microscopy, we examined >200 species from all major eukaryotic supergroups. We detected cellular crystalline inclusions in 77% species out of which 80% is composed of purines, such as anhydrous guanine (62%), guanine monohydrate (2%), uric acid (12%) and xanthine (4%). Our findings shifts the paradigm assuming predominance of calcite and oxalates. Purine crystals emerge in microorganisms in all habitats, e.g., in freshwater algae, endosymbionts of reef-building corals, deadly parasites, anaerobes in termite guts, or slime molds. Hence, purine biocrystallization is a general and ancestral eukaryotic process likely present in the last eukaryotic common ancestor (LECA) and here we propose two proteins omnipresent in eukaryotes that are likely in charge of their metabolism: hypoxanthine-guanine phosphoribosyl transferase and equilibrative nucleoside transporter. Purine crystalline inclusions are multifunctional structures representing high-capacity and rapid-turnover reserves of nitrogen and optically active elements, e.g., used in light sensing. Thus, we anticipate our work to be a starting point for further studies spanning from cell biology to global ecology, with potential applications in biotechnologies, bio-optics, or in human medicine.


Asunto(s)
Biomineralización , Eucariontes , Eucariontes/genética , Eucariontes/metabolismo , Guanina/metabolismo , Humanos , Purinas/metabolismo
7.
Metallomics ; 11(10): 1657-1666, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31380866

RESUMEN

Iron and copper are essential elements for practically all living organisms. Their metabolism is frequently interconnected, and while copper is relatively abundant in the ocean, iron is often a limiting factor for the growth of many marine microorganisms. In the present study, we aimed to elucidate the metabolisms of copper and iron and the connection of both in the marine picoalga Ostreococcus tauri. We show that O. tauri adjusts its copper economy in response to copper deficiency by downregulation of the expression of plastocyanin in favor of cytochrome c oxidase without significant changes in growth and physiology. Copper deprivation leads to increased expression of copper transporting ATPase and proteins involved in tetrapyrrole synthesis, most likely to ensure higher turnover of chlorophyll and/or heme. Elucidation of the effect of copper on the incorporation of iron into O. tauri proteins led us to identify the major iron uptake mediating protein, Ot-Fea1, whose expression and binding of iron is copper dependent. Based on our investigation of the incorporation of iron into Ot-Fea1 and ferritin, we hypothesize that O. tauri possesses another Fea1-independent iron uptake system.


Asunto(s)
Chlorophyta/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Transferrina/metabolismo , Cloroplastos/metabolismo , Hierro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA