Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Bioorg Chem ; 135: 106460, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023582

RESUMEN

Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.


Asunto(s)
Adenosina Trifosfato , Ticlopidina , Adenosina , Plaquetas , Relación Estructura-Actividad , 5'-Nucleotidasa/metabolismo
2.
Arch Pharm (Weinheim) ; 356(3): e2200493, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36437108

RESUMEN

3,3'-Diindolylmethane (DIM), a natural product-derived compound formed upon ingestion of cruciferous vegetables, was recently described to act as a partial agonist of the anti-inflammatory cannabinoid (CB) receptor subtype CB2 . In the present study, we synthesized and evaluated a series of DIM derivatives and determined their affinities for human CB receptor subtypes in radioligand binding studies. Potent compounds were additionally evaluated in functional cAMP accumulation and ß-arrestin recruitment assays. Small substituents in the 4-position of both indole rings of DIM were beneficial for high CB2 receptor affinity and efficacy. Di-(4-cyano-1H-indol-3-yl)methane (46, PSB-19837, EC50 : cAMP, 0.0144 µM, 95% efficacy compared to the full standard agonist CP55,940; ß-arrestin, 0.0149 µM, 67% efficacy) was the most potent CB2 receptor agonist of the present series. Di-(4-bromo-1H-indol-3-yl)methane (44, PSB-19571) showed higher potency in ß-arrestin (EC50 0.0450 µM, 61% efficacy) than in cAMP accumulation assays (EC50 0.509 µM, 85% efficacy) while 3-((1H-indol-3-yl)methyl)-4-methyl-1H-indole (149, PSB-18691) displayed a 19-fold bias for the G protein pathway (EC50 : cAMP, 0.0652 µM; ß-arrestin, 1.08 µM). DIM and its analogs act as allosteric CB2 receptor agonists. These potent CB2 receptor agonists have potential as novel drugs for the treatment of inflammatory diseases.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Humanos , Relación Estructura-Actividad , Agonistas de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Indoles/química , beta-Arrestinas , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835380

RESUMEN

Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , Antivirales/farmacología , SARS-CoV-2 , Inhibidores de Proteasas/farmacología , Indoles/farmacología
4.
Arch Pharm (Weinheim) ; 355(3): e2100367, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34802171

RESUMEN

Anti-inflammatory, specialized proresolving mediators such as resolvins, protectins, maresins, and lipoxins derived from polyunsaturated acids may play a potential role in lung diseases as they protect different organs in animal disease models. Polyunsaturated fatty acids are an important resource for epoxy fatty acids (EET, EEQ, and EDP) that mediate a broad array of anti-inflammatory and proresolving mechanisms, such as mitigation of the cytokine storm. However, epoxy fatty acids are rapidly metabolized by soluble epoxide hydrolase (sEH). In animal studies, administration of sEH inhibitors (sEHIs) increases epoxy fatty acid levels, reduces lung inflammation, and improves lung function, making it a viable COVID-19 treatment approach. Thus, using sEHIs to activate endogenous resolution pathways might be a novel method to minimize organ damage in severe cases and improve outcomes in COVID-19 patients. This review focuses on the use of sEH inhibitors to activate endogenous resolution mechanisms for the treatment of COVID-19.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Epóxido Hidrolasas/antagonistas & inhibidores , SARS-CoV-2 , Animales , COVID-19/inmunología , Ensayos Clínicos como Asunto , Ácidos Docosahexaenoicos , Epóxido Hidrolasas/fisiología , Ácidos Grasos Insaturados/farmacología , Humanos
5.
Arch Pharm (Weinheim) ; 355(8): e2100488, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35467043

RESUMEN

A new mild and practically simple alkyne hydroarylation protocol for the synthesis of 3-(indol-3-yl)-3-(trifluoromethyl)acrylic acid esters by the reaction of indole derivatives with ethyl/methyl 4,4,4-trifluoro-3-(indol-3-yl)but-2-enoates in trifluoroethanol was developed. This method has the following advantages: no catalyst, atom economy, high yields, broad substrate scope, and large-scale synthesis. The potential application of this protocol was further demonstrated by the synthesis of a variety of CF3 -substituted synthons and a new class of (un)symmetrical 3,3'-diindolylmethanes with a quaternary carbon core that might be biologically active.


Asunto(s)
Alquinos , Trifluoroetanol , Catálisis , Indoles , Relación Estructura-Actividad
6.
Med Res Rev ; 41(1): 72-135, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32852058

RESUMEN

Coronaviruses (CoVs) infect both humans and animals. In humans, CoVs can cause respiratory, kidney, heart, brain, and intestinal infections that can range from mild to lethal. Since the start of the 21st century, three ß-coronaviruses have crossed the species barrier to infect humans: severe-acute respiratory syndrome (SARS)-CoV-1, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2 (2019-nCoV). These viruses are dangerous and can easily be transmitted from human to human. Therefore, the development of anticoronaviral therapies is urgently needed. However, to date, no approved vaccines or drugs against CoV infections are available. In this review, we focus on the medicinal chemistry efforts toward the development of antiviral agents against SARS-CoV-1, MERS-CoV, SARS-CoV-2, targeting biochemical events important for viral replication and its life cycle. These targets include the spike glycoprotein and its host-receptors for viral entry, proteases that are essential for cleaving polyproteins to produce functional proteins, and RNA-dependent RNA polymerase for viral RNA replication.


Asunto(s)
COVID-19/epidemiología , Química Farmacéutica , Brotes de Enfermedades , Antivirales/química , Antivirales/farmacología , Reposicionamiento de Medicamentos , Humanos , Internalización del Virus/efectos de los fármacos
7.
Bioorg Med Chem Lett ; 31: 127685, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197549

RESUMEN

In continuation with the previous work, a series of 5-hydroxy-2-amidomethoxy-1,4-naphthoquinones were prepared to establish the structure-activity relationship studies toward anticancer activity (IC50 in µM) against three cell lines; colo205 (colon adenocarcinoma), T47D (breast ductal carcinoma) and K562 (chronic myelogenous leukemia). Among the synthesized compounds, naphthoquinone amines, 5 (0.8; 0.6; 0.8), 14 (0.8; 0.6; 0.5) and the amine precursor, 4 (1.3; 0.3; 1.0) displayed potent anticancer activities. A tumor targeting drug delivery system was achieved by synthesizing the conjugate 6 (1.4; 0.5; 1.1) of naphthoquinone-amine 5 and Biotin which also proved its potency. Finally, to introduce polyamine conjugate, spermidine was attached with 2-amidomethoxy-1,4-naphthoquinone. The naphthoquinone-spermidine conjugate 27 (1.2; 1.7; 1.7) also retained the activity. Thus, potent naphthoquinone amines were explored and Biotin/polyamine conjugate was developed as tumor targeting drug delivery system.


Asunto(s)
Antineoplásicos/farmacología , Biotina/farmacología , Diseño de Fármacos , Naftoquinonas/farmacología , Poliaminas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Biotina/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Poliaminas/química , Relación Estructura-Actividad
8.
Arch Pharm (Weinheim) ; 354(12): e2100300, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34697820

RESUMEN

The antithrombotic prodrugs ticlopidine and clopidogrel are thienotetrahydro-pyridine derivatives that are metabolized in the liver to produce thiols that irreversibly block adenosine diphosphate (ADP)-activated P2Y12 receptors on thrombocytes. In their native, nonmetabolized form, both drugs were reported to act as inhibitors of ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39). CD39 catalyzes the extracellular hydrolysis of nucleoside tri- and diphosphates, mainly adenosine 5'-triphosphate (ATP) and ADP, yielding adenosine monophosphate, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to produce adenosine. While ATP has proinflammatory effects, adenosine is a potent anti-inflammatory, immunosuppressive agent. Inhibitors of CD39 and CD73 have potential as novel checkpoint inhibitors for the immunotherapy of cancer and infection. In the present study, we investigated 2-substituted thienotetrahydropyridine derivatives, structurally related to ticlopidine, as CD39 inhibitors. Due to their substituent on the 2-position, they will not be metabolically transformed into reactive thiols and can, therefore, be expected to be devoid of P2Y12 receptor-antagonistic activity in vivo. Several of the investigated 2-substituted thienotetrahydropyridine derivatives showed concentration-dependent inhibition of CD39. The most potent derivative, 32, showed similar CD39-inhibitory potency to ticlopidine, both acting as allosteric inhibitors. Compound 32 showed an improved selectivity profile: While ticlopidine blocked several NTPDase isoenzymes, 32 was characterized as a novel dual inhibitor of CD39 and CD73.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , Apirasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Tienopiridinas/farmacología , Regulación Alostérica/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Humanos , Relación Estructura-Actividad , Tienopiridinas/síntesis química , Tienopiridinas/química , Ticlopidina/farmacología
9.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769111

RESUMEN

Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.


Asunto(s)
Acetatos/farmacología , Ciclopropanos/farmacología , Antagonistas de Leucotrieno/farmacología , Proyección Neuronal/efectos de los fármacos , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Sulfuros/farmacología , Animales , Animales Recién Nacidos , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos , Femenino , Masculino , Regeneración Nerviosa/efectos de los fármacos , Proyección Neuronal/genética , Ratas
10.
Angew Chem Int Ed Engl ; 60(18): 10423-10429, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33655614

RESUMEN

The main protease of SARS-CoV-2 (Mpro ), the causative agent of COVID-19, constitutes a significant drug target. A new fluorogenic substrate was kinetically compared to an internally quenched fluorescent peptide and shown to be ideally suitable for high throughput screening with recombinantly expressed Mpro . Two classes of protease inhibitors, azanitriles and pyridyl esters, were identified, optimized and subjected to in-depth biochemical characterization. Tailored peptides equipped with the unique azanitrile warhead exhibited concomitant inhibition of Mpro and cathepsin L, a protease relevant for viral cell entry. Pyridyl indole esters were analyzed by a positional scanning. Our focused approach towards Mpro inhibitors proved to be superior to virtual screening. With two irreversible inhibitors, azanitrile 8 (kinac /Ki =37 500 m-1 s-1 , Ki =24.0 nm) and pyridyl ester 17 (kinac /Ki =29 100 m-1 s-1 , Ki =10.0 nm), promising drug candidates for further development have been discovered.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Nitrilos/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/química , COVID-19/metabolismo , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Simulación del Acoplamiento Molecular , Nitrilos/química , Inhibidores de Proteasas/química , Piridinas/química , Piridinas/farmacología , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Internalización del Virus/efectos de los fármacos
11.
Beilstein J Org Chem ; 17: 1464-1475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221175

RESUMEN

A novel, versatile approach for the synthesis of unsymmetrical 3,3'-diindolylmethanes (DIMs) with a quaternary carbon center has been developed via iodine-catalyzed coupling of trifluoromethyl(indolyl)phenylmethanols with indoles. In contrast to previously reported methods, the new procedure is characterized by chemoselectivity, mild conditions, high yields, and scalability to obtain gram amounts for biological studies. Selected compounds were found to display affinity for cannabinoid receptors, which are promising drug targets for the treatment of inflammatory and neurodegenerative diseases.

12.
Beilstein J Org Chem ; 16: 778-790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395181

RESUMEN

A new, mild and efficient protocol for the synthesis of trifluoromethyl(indolyl)phenylmethanols by the reaction of indoles with a variety of aromatic fluoromethyl ketones in the presence of K2CO3 (15 mol %) and n-Bu4PBr (15 mol %) in water. The desired products were obtained in good to excellent yields without requiring a column chromatographic purification. The reusability of the catalytic system and large-scale synthesis of indolyl(phenyl)methanols, which would further transform into biological active indole-derived compounds, are further advantages of this protocol.

13.
Bioorg Med Chem ; 27(18): 4110-4123, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31378598

RESUMEN

The sulfonamidophenylethylamide analogues were explored for finding novel and potent cardiac myosin activators. Among them, N-(4-(N,N-dimethylsulfamoyl)phenethyl-N-methyl-5-phenylpentanamide (13, CMA at 10 µM = 48.5%; FS = 26.21%; EF = 15.28%) and its isomer, 4-(4-(N,N-dimethylsulfamoyl)phenyl-N-methyl-N-(3-phenylpropyl)butanamide (27, CMA at 10 µM = 55.0%; FS = 24.69%; EF = 14.08%) proved to be efficient cardiac myosin activators both in in vitro and in vivo studies. Compounds 13 (88.2 + 3.1% at 5 µM) and 27 (46.5 + 2.8% at 5 µM) showed positive inotropic effect in isolated rat ventricular myocytes. The potent compounds 13 and 27 were highly selective for cardiac myosin over skeletal and smooth muscle myosin, and therefore these potent and selective amide derivatives could be considered a new class of cardiac myosin activators for the treatment of systolic heart failure.


Asunto(s)
Amidas/uso terapéutico , Miosinas Cardíacas/efectos de los fármacos , Amidas/farmacología , Humanos , Relación Estructura-Actividad
14.
Arch Pharm (Weinheim) ; 352(12): e1900011, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31596021

RESUMEN

Dimerization of proteins/receptors plays a critical role in various cellular processes, including cell proliferation and differentiation. Therefore, targeting such dimeric proteins/receptors by dimeric small molecules could be a potential therapeutic approach to treating various diseases, including inflammation-associated diseases like cancer. A novel series of bis-imidazoles (13-18) and bis-imidazo[1,2-a]pyridines (19-28) were designed and synthesized from Schiff base dimers (1-12) for their anticancer activities. All the synthesized compounds were screened for anticancer activities against three cancer cell lines, including cervical (HeLa), breast (MDA-MB-231), and renal cancer (ACHN). From structure-activity relationship studies, imidazo[1,2-a]pyridines (19-28) showed remarkable cytotoxic activities, with compounds 19 and 24 showing the best inhibitory activities against all three cell lines. Especially, both 19 and 24 were very effective against the breast cancer cell line (19, GI50 = 0.43 µM; 24, GI50 = 0.3 µM), exceeding the activity of the control adriamycin (GI50 = 0.51 µM). The in vivo anticancer activity results of compounds 19 and 24 were comparable with those of the animals treated with the standard drug tamoxifen. Therefore, the dimeric imidazo[1,2-a]pyridine scaffold could serve as a potential lead for the development of novel anticancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Imidazoles/síntesis química , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Multimerización de Proteína/efectos de los fármacos , Piridinas/síntesis química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Imidazoles/química , Imidazoles/farmacología , Estructura Molecular , Piridinas/química , Piridinas/farmacología , Ratas , Relación Estructura-Actividad , Resultado del Tratamiento
15.
J Org Chem ; 83(17): 9902-9913, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30025207

RESUMEN

Diindolylmethane (DIM) and its derivatives have recently been in the focus of interest due to their significant biological activities, specifically in cancer prevention and therapy. Molecular targets of DIM have been identified, e.g., the immunostimulatory G protein-coupled receptor GPR84. However, most of the reported and investigated DIM derivatives are symmetrical because general methods for obtaining unsymmetrical DIMs have been lacking. To optimize the interaction of DIM derivatives with their protein targets, unsymmetrical substitution is required. In the present study we developed a new, mild and efficient access to unsymmetrically substituted 3,3'-DIMs by reaction of (3-indolylmethyl)trimethylammonium iodides with a wide range of substituted indole derivatives. 7-Azaindole also led to the 3,3'-connected DIM analogue, while 4- and 5-azaindoles reacted at the N1-nitrogen atom as confirmed by X-ray crystallography. The reactions were performed in water without the requirement of a catalyst or other additives. Wide substrate scope, operational simplicity, environmentally benign workup, and high yields are further advantages of the new method. The synthetic protocol proved to be suitable for upscaling to yield gram amounts for pharmacological studies. This procedure will allow the preparation of a broad range of novel, unsymmetrical DIM derivatives to exploit their potential as novel drugs.


Asunto(s)
Indoles/química , Indoles/síntesis química , Técnicas de Química Sintética , Modelos Moleculares , Conformación Molecular , Nitrógeno/química
16.
Bioorg Med Chem Lett ; 28(14): 2369-2374, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29937058

RESUMEN

To explore novel cardiac myosin activator, a series of diphenylalkyl substituted 1,3,4-oxadiazoles and 1,2,4-oxadiazoles have been prepared and tested for cardiac myosin ATPase activation in vitro. In all cases, three carbon spacer between the oxadiazole core and one of the phenyl ring was considered crucial. In case of 1,3,4-oxadiazole, zero to two carbon spacer between oxadiazole core and other phenyl ring are favorable. Phenyl ring can be replaced by cyclohexyl moiety. In case of 1,2,4-oxadiazole, zero or one carbon spacer between the oxadiazole and other phenyl ring are favorable. Introduction of hydrogen bonding donor (NH) group at the 2nd position of the 1,3,4-oxadiazole enhances the activity. Substitutions on either of the phenyl rings or change of phenyl ring to other heterocycle are not tolerated for both the oxadiazoles. The prepared oxadiazoles showed selective activation for cardiac muscle over smooth and skeleton muscles.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Miosinas Cardíacas/efectos de los fármacos , Oxadiazoles/farmacología , Miosinas Cardíacas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Enlace de Hidrógeno , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Relación Estructura-Actividad
17.
J Enzyme Inhib Med Chem ; 32(1): 403-425, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28097901

RESUMEN

Melanogenesis is a process to synthesize melanin, which is a primary responsible for the pigmentation of human skin, eye and hair. Although numerous enzymatic catalyzed and chemical reactions are involved in melanogenesis process, the enzymes such as tyrosinase and tyrosinase-related protein-1 (TRP-1) and TRP-2 played a major role in melanin synthesis. Specifically, tyrosinase is a key enzyme, which catalyzes a rate-limiting step of the melanin synthesis, and the downregulation of tyrosinase is the most prominent approach for the development of melanogenesis inhibitors. Therefore, numerous inhibitors that target tyrosinase have been developed in recent years. The review focuses on the recent discovery of tyrosinase inhibitors that are directly involved in the inhibition of tyrosinase catalytic activity and functionality from all sources, including laboratory synthetic methods, natural products, virtual screening and structure-based molecular docking studies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Preparaciones para Aclaramiento de la Piel , Animales , Catálisis , Humanos , Melaninas/antagonistas & inhibidores , Melaninas/biosíntesis
18.
J Med Chem ; 67(16): 14553-14573, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39116445

RESUMEN

ACKR3, an atypical chemokine receptor, has been associated with prothrombotic events and the development of cardiovascular events. We designed, synthesized, and evaluated a series of novel small molecule ACKR3 agonists. Extensive structure-activity relationship studies resulted in several promising agonists with potencies ranging from the low micromolar to nanomolar range, for example, 23 (EC50 = 111 nM, Emax = 95%) and 27 (EC50 = 69 nM, Emax = 82%) in the ß-arrestin-recruitment assay. These compounds are selective for ACKR3 versus ACKR2, CXCR3, and CXCR4. Several agonists were subjected to investigations of their P-selectin expression reduction in the flow cytometry experiments. In particular, compounds 23 and 27 showed the highest potency for platelet aggregation inhibition, up to 80% and 97%, respectively. The most promising compounds, especially 27, exhibited good solubility, metabolic stability, and no cytotoxicity, suggesting a potential tool compound for the treatment of platelet-mediated thrombosis.


Asunto(s)
Diseño de Fármacos , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Receptores CXCR , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Relación Estructura-Actividad , Agregación Plaquetaria/efectos de los fármacos , Receptores CXCR/agonistas , Receptores CXCR/metabolismo , Animales , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Selectina-P/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo
19.
J Med Chem ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146284

RESUMEN

SARS-CoV-2 infections pose a high risk for vulnerable patients. In this study, we designed benzoic acid halopyridyl esters bearing a variety of substituents as irreversible inhibitors of the main viral protease (Mpro). Altogether, 55 benzoyl chloro/bromo-pyridyl esters were synthesized, with broad variation of the substitution pattern on the benzoyl moiety. A workflow was employed for multiparametric optimization, including Mpro inhibition assays of SARS-CoV-2 and related pathogenic coronaviruses, the duration of enzyme inhibition, the compounds' stability versus glutathione, cytotoxicity, and antiviral activity. Several compounds showed IC50 values in the low nanomolar range, kinact/Ki values of >100,000 M-1 s-1 and high antiviral activity. High-resolution X-ray cocrystal structures indicated an important role of ortho-fluorobenzoyl substitution, forming a water network that stabilizes the inhibitor-bound enzyme. The most potent antiviral compound was the p-ethoxy-o-fluorobenzoyl chloropyridyl ester (PSB-21110, 29b, MW 296 g/mol; EC50 2.68 nM), which may serve as a lead structure for broad-spectrum anticoronaviral therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA