Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Vet Pathol ; : 3009858241269926, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162232

RESUMEN

Veterinary pathology credentials serve as a concise means attesting to educational attainments and experiences indicating a readiness for professional practice. Given the cost, time, and stress associated with obtaining different qualifications, pathologists must consider what credentials enhance their readiness. In this commentary, the authors describe how their various degrees and certifications have facilitated their individual and organizational success. The minimum credentials for proficient veterinary pathology practice are a veterinary medical degree (DVM or equivalent) and advanced pathology training (residency and/or on-the-job "apprenticeship") ideally culminating in board certification in pathology (American College of Veterinary Pathologists [ACVP] diplomate status or equivalent). Graduate degrees (MS, PhD, MPH, etc) and/or other qualifications in allied biomedical fields (eg, board certification in internal medicine, laboratory animal medicine, poultry medicine, preventive medicine, or toxicology) may improve employability by affirming specialty knowledge in another complementary discipline. The authors note that pathology positions may be obtained without a long list of degrees or certifications, and that more credentials may provide occupational flexibility for some employers. However, a good work ethic, experience in the field, ability to adapt to changes, job satisfaction, good attitude, and demonstrated productivity are also important, and indeed, they are often the paramount criteria for career success as a veterinary pathologist.

2.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554697

RESUMEN

Coronaviruses (CoVs) have repeatedly emerged from wildlife hosts and infected humans and livestock animals to cause epidemics with significant morbidity and mortality. CoVs infect various organs, including respiratory and enteric systems, as exemplified by newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The constellation of viral factors that contribute to developing enteric disease remains elusive. Here, we investigated CoV interferon antagonists for their contribution to enteric pathogenesis. Using an infectious clone of an enteric CoV, porcine epidemic diarrhea virus (icPEDV), we generated viruses with inactive versions of interferon antagonist nonstructural protein 1 (nsp1), nsp15, and nsp16 individually or combined into one virus designated icPEDV-mut4. Interferon-responsive PK1 cells were infected with these viruses and produced higher levels of interferon responses than were seen with wild-type icPEDV infection. icPEDV-mut4 elicited robust interferon responses and was severely impaired for replication in PK1 cells. To evaluate viral pathogenesis, piglets were infected with either icPEDV or icPEDV-mut4. While the icPEDV-infected piglets exhibited clinical disease, the icPEDV-mut4-infected piglets showed no clinical symptoms and exhibited normal intestinal pathology at day 2 postinfection. icPEDV-mut4 replicated in the intestinal tract, as revealed by detection of viral RNA in fecal swabs, with sequence analysis documenting genetic stability of the input strain. Importantly, icPEDV-mut4 infection elicited IgG and neutralizing antibody responses to PEDV. These results identify nsp1, nsp15, and nsp16 as virulence factors that contribute to the development of PEDV-induced diarrhea in swine. Inactivation of these CoV interferon antagonists is a rational approach for generating candidate vaccines to prevent disease and spread of enteric CoVs, including SARS-CoV-2.IMPORTANCE Emerging coronaviruses, including SARS-CoV-2 and porcine CoVs, can infect enterocytes, cause diarrhea, and be shed in the feces. New approaches are needed to understand enteric pathogenesis and to develop vaccines and therapeutics to prevent the spread of these viruses. Here, we exploited a reverse genetic system for an enteric CoV, porcine epidemic diarrhea virus (PEDV), and outline an approach of genetically inactivating highly conserved viral factors known to limit the host innate immune response to infection. Our report reveals that generating PEDV with inactive versions of three viral interferon antagonists, nonstructural proteins 1, 15, and 16, results in a highly attenuated virus that does not cause diarrhea in animals and elicits a neutralizing antibody response in virus-infected animals. This strategy may be useful for generating live attenuated vaccine candidates that prevent disease and fecal spread of enteric CoVs, including SARS-CoV-2.


Asunto(s)
Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Interferones/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Vacunas Atenuadas/inmunología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Betacoronavirus/inmunología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/prevención & control , Diarrea/patología , Diarrea/virología , Modelos Animales de Enfermedad , Endorribonucleasas/antagonistas & inhibidores , Heces/virología , Íleon/patología , Inmunidad Innata , Yeyuno/patología , Pandemias , Neumonía Viral/inmunología , Virus de la Diarrea Epidémica Porcina/genética , ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Porcinos , Enfermedades de los Porcinos/virología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
3.
Arch Virol ; 166(10): 2835-2839, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34319454

RESUMEN

The bovine adenovirus 7 (BAdV-7) isolate SD18-74 was recovered from lung tissue of calves in South Dakota. The 30,043-nucleotide (nt) genome has the typical organization of Atadenovirus genus members. The sequence shares over 99% nt sequence identity with two Japanese BAdV-7 sequences, followed by 74.9% nt sequence identity with the ovine adenovirus 7 strain OAV287, a member of the species Ovine atadenovirus D. SD18-74 was amplified in both bovine and ovine primary nasal turbinate cells, demonstrating greater fitness in bovine cells. The genomic and biological characteristics of BAdV-7 SD18-74 support the inclusion of the members of the BAdV-7 group in a new species in the genus Atadenovirus.


Asunto(s)
Infecciones por Adenoviridae/veterinaria , Atadenovirus/clasificación , Atadenovirus/genética , Bovinos/virología , Infecciones por Adenoviridae/virología , Animales , Atadenovirus/aislamiento & purificación , Atadenovirus/fisiología , Enfermedades de los Bovinos/virología , Línea Celular , ADN Viral/genética , Genoma Viral/genética , Ovinos , Estados Unidos , Replicación Viral
4.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728254

RESUMEN

Identifying viral antagonists of innate immunity and determining if they contribute to pathogenesis are critical for developing effective strategies to control emerging viruses. Previously, we reported that an endoribonuclease (EndoU) encoded by murine coronavirus plays a pivotal role in evasion of host innate immune defenses in macrophages. Here, we asked if the EndoU activity of porcine epidemic diarrhea coronavirus (PEDV), which causes acute diarrhea in swine, plays a role in antagonizing the innate response in porcine epithelial cells and macrophages, the sites of viral replication. We constructed an infectious clone of PEDV-Colorado strain (icPEDV-wt) and an EndoU-mutant PEDV (icPEDV-EnUmt) by changing the codon for a catalytic histidine residue of EndoU to alanine (His226Ala). We found that both icPEDV-wt and icPEDV-EnUmt propagated efficiently in interferon (IFN)-deficient Vero cells. In contrast, the propagation of icPEDV-EnUmt was impaired in porcine epithelial cells (LLC-PK1), where we detected an early and robust transcriptional activation of type I and type III IFNs. Infection of piglets with the parental Colorado strain, icPEDV-wt, or icPEDV-EnUmt revealed that all viruses replicated in the gut and induced diarrhea; however, there was reduced viral shedding and mortality in the icPEDV-EnUmt-infected animals. These results demonstrate that EndoU activity is not required for PEDV replication in immortalized, IFN-deficient Vero cells, but is important for suppressing the IFN response in epithelial cells and macrophages, which facilitates replication, shedding, and pathogenesis in vivo We conclude that PEDV EndoU activity is a key virulence factor that suppresses both type I and type III IFN responses.IMPORTANCE Coronaviruses (CoVs) can emerge from an animal reservoir into a naive host species to cause pandemic respiratory or gastrointestinal diseases with significant mortality in humans or domestic animals. Porcine epidemic diarrhea virus (PEDV), an alphacoronavirus (alpha-CoV), infects gut epithelial cells and macrophages, inducing diarrhea and resulting in high mortality in piglets. How PEDV suppresses the innate immune response was unknown. We found that mutating a viral endoribonuclease, EndoU, results in a virus that activates both the type I interferon response and the type III interferon response in macrophages and epithelial cells. This activation of interferon resulted in limited viral replication in epithelial cell cultures and was associated with reduced virus shedding and mortality in piglets. This study reveals a role for EndoU activity as a virulence factor in PEDV infection and provides an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.


Asunto(s)
Infecciones por Coronavirus , Endorribonucleasas , Interferón Tipo I/inmunología , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Proteínas Virales , Animales , Línea Celular , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Endorribonucleasas/genética , Endorribonucleasas/inmunología , Interferón Tipo I/genética , Virus de la Diarrea Epidémica Porcina/enzimología , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/inmunología , Porcinos , Enfermedades de los Porcinos/enzimología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Proteínas Virales/genética , Proteínas Virales/inmunología , Esparcimiento de Virus/inmunología
5.
Mol Pharm ; 17(2): 441-452, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31886676

RESUMEN

Drug delivery by direct intraductal administration can achieve high local drug concentration in the breast and minimize systemic levels. However, the clinical application of this approach for breast cancer treatment is limited by the rapid clearance of the drug from the ducts. With the goal of developing strategies to prolong drug retention in the breast, this study was focused on understanding the influence of particle size and formulation on breast duct and lymph node retention. Fluorescent-labeled polystyrene (PS) particles ranging in size from 100 to 1000 nm were used to study the influence of particle size. Polylactic acid-co-glycolic acid (PLGA) was used to develop and test formulations for intraductal delivery. Cy 5.5, a near-IR dye, was encapsulated in PLGA microparticles, nanoparticles, and the in situ gel to study the biodistribution in rats using an in vivo imager. PS microparticles (1 µm) showed longer retention in the duct compared to 100 and 500 nm nanoparticles. The ductal retention half-life was 5-fold higher for PS microparticles compared to the nanoparticles. On the other hand, the free dye was cleared from the breast within 6 h. PLGA nanoparticles sustained the release of Cy 5.5 for >4 days. Microparticles and gel showed a much slower release than nanoparticles. PLGA in situ gel and microparticles were retained in the breast for up to 4 days, while the nanoparticles were retained in the breast for 2 days. PLGA nanoparticles and microparticles drained to the axillary lymph node and were retained for up to 24 and 48 h, respectively, while the in situ gel and the free dye did not show any detectable fluorescence in the lymph nodes. Taken together, the results demonstrate the feasibility of prolonged retention in the breast duct and lymph node by optimal formulation design. The findings can serve as a framework to design formulations for localized treatment of breast cancer.


Asunto(s)
Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Ganglios Linfáticos/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Animales , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Liberación de Fármacos , Femenino , Semivida , Ganglios Linfáticos/metabolismo , Glándulas Mamarias Animales/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Poliestirenos/química , Poliestirenos/farmacocinética , Ratas , Ratas Sprague-Dawley , Distribución Tisular
6.
Virol J ; 14(1): 76, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28403874

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in pregnant sows and acute respiratory disease in young pigs. It is a leading infectious agent of swine respiratory complex, which has significant negative economic impact on the swine industry. Commercial markets currently offer both live attenuated and killed vaccines; however, increasing controversy exists about their efficacy providing complete protection. Virus-like particles (VLPs) possess many desirable features of a potent vaccine candidate and have been proven to be highly immunogenic and protective against virus infections. Here we explored the efficacy of PRRSV VLPs together with the use of a novel 2', 3'-cGAMP VacciGrade™ adjuvant. METHODS: Animals were immunized twice intranasally with phosphate buffered saline (PBS), PRRSV VLPs, or PRRSV VLPs plus 2', 3'-cGAMP VacciGrade™ at 2 weeks apart. Animals were challenged with PRRSV-23983 at 2 weeks post the second immunization. PRRSV specific antibody response and cytokines were measured. Viremia, clinical signs, and histological lesions were evaluated. RESULTS: PRRSV N protein specific antibody was detected in all animals at day 10 after challenge, but no significant difference was observed among the vaccinated and control groups. Surprisingly, a significantly higher viremia was observed in the VLPs and VLPs plus the adjuvant groups compared to the control group. The increased viremia is correlated with a higher interferon-α induction in the serum of the VLPs and the VLPs plus the adjuvant groups. CONCLUSIONS: Intranasal immunizations of pigs with PRRSV VLPs and VLPs plus the 2', 3'-cGAMP VacciGrade™ adjuvant exacerbates viremia. A higher level of interferon-α production, but not interferon-γ and IL-10, is correlated with enhanced virus replication. Overall, PRRSV VLPs and PRRSV VLPs plus the adjuvant fail to provide protection against PRRSV challenge. Different dose of VLPs and alternative route of vaccination such as intramuscular injection should be explored in the future studies to fully assess the feasibility of such a vaccine platform for PRRSV control and prevention.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Inmunización/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Viremia/veterinaria , Administración Intranasal , Animales , Anticuerpos Antivirales/sangre , Formación de Anticuerpos/efectos de los fármacos , Citocinas/sangre , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Distribución Aleatoria , Porcinos , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Vacunas Virales/administración & dosificación , Viremia/inmunología , Viremia/patología , Viremia/prevención & control , Replicación Viral/efectos de los fármacos
7.
J Gen Virol ; 97(10): 2719-2731, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27558814

RESUMEN

The parapoxvirus Orf virus (ORFV), has long been recognized for its immunomodulatory properties in permissive and non-permissive animal species. Here, a new recombinant ORFV expressing the full-length spike (S) protein of Porcine epidemic diarrhea virus (PEDV) was generated and its immunogenicity and protective efficacy were evaluated in pigs. The PEDV S was inserted into the ORFV121 gene locus, an immunomodulatory gene that inhibits activation of the NF-κB signalling pathway and contributes to ORFV virulence in the natural host. The recombinant ORFV-PEDV-S virus efficiently and stably expressed the PEDV S protein in cell culture in vitro. Three intramuscular (IM) immunizations with the recombinant ORFV-PEDV-S in 3-week-old pigs elicited robust serum IgG, IgA and neutralizing antibody responses against PEDV. Additionally, IM immunization with the recombinant ORFV-PEDV-S virus protected pigs from clinical signs of porcine epidemic diarrhoea (PED) and reduced virus shedding in faeces upon challenge infection. These results demonstrate the suitability of ORFV121 gene locus as an insertion site for heterologous gene expression and delivery by ORFV-based viral vectors. Additionally, the results provide evidence of the potential of ORFV as a vaccine delivery vector for enteric viral diseases of swine. This study may have important implications for future development of ORFV-vectored vaccines for swine.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enfermedades de los Porcinos/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Inmunización , Parapoxvirus/genética , Parapoxvirus/metabolismo , Virus de la Diarrea Epidémica Porcina/genética , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
8.
J Gen Virol ; 97(12): 3267-3279, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27902357

RESUMEN

Senecavirus A (SVA) is an emerging picornavirus that has been associated with vesicular disease and neonatal mortality in swine. Many aspects of SVA infection biology and pathogenesis, however, remain unknown. Here the pathogenesis of SVA was investigated in finishing pigs. Animals were inoculated via the oronasal route with SVA strain SD15-26 and monitored for clinical signs and lesions associated with SVA infection. Viraemia was assessed in serum and virus shedding monitored in oral and nasal secretions and faeces by real-time reverse transcriptase quantitative PCR (RT-qPCR) and/or virus isolation. Additionally, viral load and tissue distribution were assessed during acute infection and following convalescence from disease. Clinical signs characterized by lethargy and lameness were first observed on day 4 post-inoculation (pi) and persisted for approximately 2-10 days. Vesicular lesions were first observed on day 4 pi on the snout and/or feet, affecting the coronary bands, dewclaws, interdigital space and heel/sole of SVA-infected animals. A short-term viraemia was observed between days 3 and 10 pi, whereas virus shedding was detected between days 1 and 28 pi in oral and nasal secretions and faeces. Notably, RT-qPCR and in situ hybridization (ISH) performed on tissues collected on day 38 pi revealed the presence of SVA RNA in the tonsils of all SVA-infected animals. Serological responses to SVA were characterized by early neutralizing antibody responses (day 5 pi), which coincided with decreased levels of viraemia, virus shedding and viral load in tissues. This study provides significant insights into the pathogenesis and infectious dynamics of SVA in swine.


Asunto(s)
Picornaviridae/patogenicidad , Enfermedades de los Porcinos/virología , Viremia/veterinaria , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Picornaviridae/genética , Picornaviridae/aislamiento & purificación , Picornaviridae/fisiología , Porcinos , Enfermedades de los Porcinos/sangre , Enfermedades de los Porcinos/patología , Carga Viral , Viremia/sangre , Viremia/patología , Viremia/virología , Virulencia , Esparcimiento de Virus
9.
J Virol ; 89(23): 11990-2001, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26378161

RESUMEN

UNLABELLED: Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. IMPORTANCE: Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs, similarly to virus infection in its native host, demonstrates that guinea pigs would be a suitable model host to study the replication and transmission potential of bovine FLUDV.


Asunto(s)
Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Enfermedades Transmisibles Emergentes/veterinaria , Infecciones por Orthomyxoviridae/veterinaria , Thogotovirus/fisiología , Replicación Viral/fisiología , Animales , Secuencia de Bases , Bovinos , Línea Celular , Perros , Técnica del Anticuerpo Fluorescente Indirecta , Cobayas , Humanos , Inmunohistoquímica , Pulmón/virología , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/transmisión , Análisis de Secuencia de ADN , Seroconversión , Thogotovirus/genética , Cornetes Nasales/virología
10.
J Clin Microbiol ; 52(1): 234-43, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24197882

RESUMEN

Porcine epidemic diarrhea virus (PEDV) was detected in May 2013 for the first time in U.S. swine and has since caused significant economic loss. Obtaining a U.S. PEDV isolate that can grow efficiently in cell culture is critical for investigating pathogenesis and developing diagnostic assays and for vaccine development. An additional objective was to determine which gene(s) of PEDV is most suitable for studying the genetic relatedness of the virus. Here we describe two PEDV isolates (ISU13-19338E and ISU13-22038) successfully obtained from the small intestines of piglets from sow farms in Indiana and Iowa, respectively. The two isolates have been serially propagated in cell culture for over 30 passages and were characterized for the first 10 passages. Virus production in cell culture was confirmed by PEDV-specific real-time reverse-transcription PCR (RT-PCR), immunofluorescence assays, and electron microscopy. The infectious titers of the viruses during the first 10 passages ranged from 6 × 10(2) to 2 × 10(5) 50% tissue culture infective doses (TCID50)/ml. In addition, the full-length genome sequences of six viruses (ISU13-19338E homogenate, P3, and P9; ISU13-22038 homogenate, P3, and P9) were determined. Genetically, the two PEDV isolates were relatively stable during the first 10 passages in cell culture. Sequences were also compared to those of 4 additional U.S. PEDV strains and 23 non-U.S. strains. All U.S. PEDV strains were genetically closely related to each other (≥99.7% nucleotide identity) and were most genetically similar to Chinese strains reported in 2011 to 2012. Phylogenetic analyses using different genes of PEDV suggested that the full-length spike gene or the S1 portion is appropriate for sequencing to study the genetic relatedness of these viruses.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , Análisis por Conglomerados , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Genoma Viral , Inestabilidad Genómica , Genotipo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/ultraestructura , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia , Pase Seriado , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados Unidos/epidemiología , Cultivo de Virus
11.
PLoS One ; 19(7): e0306532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968319

RESUMEN

This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA's fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Virus de la Gastroenteritis Transmisible/genética , Virus de la Gastroenteritis Transmisible/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/genética , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/diagnóstico , Estudios Retrospectivos , Gastroenteritis Porcina Transmisible/diagnóstico , Gastroenteritis Porcina Transmisible/virología , Gastroenteritis Porcina Transmisible/epidemiología , Reacción en Cadena de la Polimerasa/métodos , Deltacoronavirus/genética , Deltacoronavirus/aislamiento & purificación , Estados Unidos/epidemiología
12.
Vet Ophthalmol ; 16(2): 149-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22624528

RESUMEN

An 11-year-old Oldenburg mare presented following three episodes of acute, transient blindness, ataxia, and disorientation within the preceding 7 months. Clinical improvement, including return of vision, occurred within 1 week of initiating corticosteroid therapy for each of the three episodes. However, mild right-sided miosis was a consistent finding on ophthalmic examinations. Routine clinicopathologic testing revealed no significant abnormalities, and testing of cerebral spinal fluid for selected infectious diseases was unrewarding. Computed tomography of the brain demonstrated a hyperattenuating mass with peripheral mineralization in the rostroventral aspect of each lateral ventricle. The mare was euthanized due to a guarded to poor prognosis. On histopathology, the masses consisted of clusters of cholesterol clefts admixed with leukocytes, mineral deposits, and connective tissue. Cholesterinic granulomas of the lateral ventricles and hydrocephaly were diagnosed. Cholesterinic granulomas should be considered a differential diagnosis in horses presenting for intermittent blindness.


Asunto(s)
Ataxia/veterinaria , Ceguera/veterinaria , Encefalopatías/veterinaria , Granuloma/veterinaria , Enfermedades de los Caballos/patología , Animales , Ataxia/etiología , Ceguera/etiología , Encefalopatías/patología , Granuloma/patología , Enfermedades de los Caballos/etiología , Caballos
13.
Virology ; 587: 109859, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37544044

RESUMEN

Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV. Our results demonstrated that both viruses were prevalent in BRD cases and the overall positivity rates of IDV and ICV were 20.88% and 5.99% respectively. Further analysis of three IDV strains isolated from lungs of cattle with BRD showed that these lung-tropic strains belonged to D/Michigan/2019 clade and diverged antigenically from the circulating dominant IDV clades D/OK and D/660. Our results reveal that IDV and ICV are associated with BRD complex and support a role for IDV and ICV in the etiology of BRD.


Asunto(s)
Complejo Respiratorio Bovino , Enfermedades de los Bovinos , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Virus , Bovinos , Animales , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Prevalencia , Complejo Respiratorio Bovino/epidemiología , Enfermedades de los Bovinos/epidemiología
14.
Oncogene ; 42(21): 1763-1776, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037900

RESUMEN

The mTORC2 pathway plays a critical role in promoting tumor progression in human colorectal cancer (CRC). The regulatory mechanisms for this signaling pathway are only partially understood. We previously identified UBXN2A as a novel tumor suppressor protein in CRCs and hypothesized that UBXN2A suppresses the mTORC2 pathway, thereby inhibiting CRC growth and metastasis. We first used murine models to show that haploinsufficiency of UBXN2A significantly increases colon tumorigenesis. Induction of UBXN2A reduces AKT phosphorylation downstream of the mTORC2 pathway, which is essential for a plethora of cellular processes, including cell migration. Meanwhile, mTORC1 activities remain unchanged in the presence of UBXN2A. Mechanistic studies revealed that UBXN2A targets Rictor protein, a key component of the mTORC2 complex, for 26S proteasomal degradation. A set of genetic, pharmacological, and rescue experiments showed that UBXN2A regulates cell proliferation, apoptosis, migration, and colon cancer stem cells (CSCs) in CRC. CRC patients with a high level of UBXN2A have significantly better survival, and high-grade CRC tissues exhibit decreased UBXN2A protein expression. A high level of UBXN2A in patient-derived xenografts and tumor organoids decreases Rictor protein and suppresses the mTORC2 pathway. These findings provide new insights into the functions of an ubiquitin-like protein by inhibiting a dominant oncogenic pathway in CRC.


Asunto(s)
Neoplasias del Colon , Humanos , Ratones , Animales , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Neoplasias del Colon/patología , Línea Celular Tumoral , Células Madre Neoplásicas/patología , Transducción de Señal , Factores de Transcripción/genética , Carcinogénesis/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitinas/metabolismo
15.
Cell Death Discov ; 8(1): 135, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347121

RESUMEN

A high-throughput drug screen revealed that veratridine (VTD), a natural plant alkaloid, induces expression of the anti-cancer protein UBXN2A in colon cancer cells. UBXN2A suppresses mortalin, a heat shock protein, with dominant roles in cancer development including epithelial-mesenchymal transition (EMT), cancer cell stemness, drug resistance, and apoptosis. VTD-dependent expression of UBXN2A leads to the deactivation of mortalin in colon cancer cells, making VTD a potential targeted therapy in malignant tumors with high levels of mortalin. VTD was used clinically for the treatment of hypertension in decades past. However, the discovery of newer antihypertensive drugs and concerns over potential neuro- and cardiotoxicity ended the use of VTD for this purpose. The current study aims to determine the safety and efficacy of VTD at doses sufficient to induce UBXN2A expression in a mouse model. A set of flow-cytometry experiments confirmed that VTD induces both early and late apoptosis in a dose-dependent manner. In vivo intraperitoneal (IP) administration of VTD at 0.1 mg/kg every other day (QOD) for 4 weeks effectively induced expression of UBXN2A in the small and large intestines of mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays on tissues collected from VTD-treated animals demonstrated VTD concentrations in the low pg/mg range. To address concerns regarding neuro- and cardiotoxicity, a comprehensive set of behavioral and cardiovascular assessments performed on C57BL/6NHsd mice revealed that VTD generates no detectable neurotoxicity or cardiotoxicity in animals receiving 0.1 mg/kg VTD QOD for 30 days. Finally, mouse xenograft experiments in athymic nude mice showed that VTD can suppress tumor growth. The main causes for the failure of experimental oncologic drug candidates are lack of sufficient safety and efficacy. The results achieved in this study support the potential utility of VTD as a safe and efficacious anti-cancer molecule.

16.
Arch Environ Contam Toxicol ; 61(1): 144-50, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20803199

RESUMEN

High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 µg/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 µg/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction.


Asunto(s)
Calcógenos/metabolismo , Patos/metabolismo , Contaminantes Ambientales/metabolismo , Metales/metabolismo , Minerales/metabolismo , Migración Animal , Animales , Cadmio/metabolismo , Monitoreo del Ambiente , Femenino , Hígado/metabolismo , Masculino , Medio Oeste de Estados Unidos , Estaciones del Año , Selenio/metabolismo
17.
Viruses ; 13(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34578257

RESUMEN

Porcine circovirus type 2 (PCV2), the causative agent of a wasting disease in weanling piglets, has periodically evolved into several new subtypes since its discovery, indicating that the efficacy of current vaccines can be improved. Although a DNA virus, the mutation rates of PCV2 resemble RNA viruses. The hypothesis that recoding of selected serine and leucine codons in the PCV2b capsid gene could result in stop codons due to mutations occurring during viral replication and thus result in rapid attenuation was tested. Vaccination of weanling pigs with the suicidal vaccine constructs elicited strong virus-neutralizing antibody responses. Vaccination prevented lesions, body-weight loss, and viral replication on challenge with a heterologous PCV2d strain. The suicidal PCV2 vaccine construct was not detectable in the sera of vaccinated pigs at 14 days post-vaccination, indicating that the attenuated vaccine was very safe. Exposure of the modified virus to immune selection pressure with sub-neutralizing levels of antibodies resulted in 5 of the 22 target codons mutating to a stop signal. Thus, the described approach for the rapid attenuation of PCV2 was both effective and safe. It can be readily adapted to newly emerging viruses with high mutation rates to meet the current need for improved platforms for rapid-response vaccines.


Asunto(s)
Anticuerpos Antivirales/sangre , Circovirus/genética , Circovirus/fisiología , Vacunas Virales/inmunología , Replicación Viral/genética , Animales , Anticuerpos Neutralizantes/inmunología , Proteínas de la Cápside/genética , Infecciones por Circoviridae/inmunología , Circovirus/clasificación , ADN Viral/sangre , Inmunidad Celular , Porcinos , Enfermedades de los Porcinos/virología , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Virales/administración & dosificación , Replicación Viral/inmunología
18.
Vet Microbiol ; 252: 108949, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33338948

RESUMEN

Bovine viral diarrhea viruses (BVDV) are significant pathogens of cattle, leading to losses associated with reproductive failure, respiratory disease and immune dysregulation. While cattle are the reservoir for BVDV, a wide range of domestic and wild ruminants are susceptible to infection and disease caused by BVDV. Samples from four American bison (Bison bison) from a captive herd were submitted for diagnostic testing due to their general unthriftiness. Metagenomic sequencing on pooled nasal swabs and serum identified co-infection with a BVDV and a bovine bosavirus. The BVDV genome was more similar to the vaccine strain Oregon C24 V than to other BVDV sequences in GenBank, with 92.7 % nucleotide identity in the open reading frame. The conserved 5'-untranslated region was 96.3 % identical to Oregon C24 V. Bosavirus has been previously identified in pooled fetal bovine serum but its clinical significance is unknown. Sequencing results were confirmed by virus isolation and PCR detection of both viruses in serum and nasal swab samples from two of the four bison. One animal was co-infected with both BVDV and bosavirus while separate individuals were positive solely for BVDV or bosavirus. Serum and nasal swabs from these same animals collected 51 days later remained positive for BVDV and bosavirus. These results suggest that both viruses can persistently infect bison. While the etiological significance of bosavirus infection is unknown, the ability of BVDV to persistently infect bison has implications for BVDV control and eradication programs. Possible synergy between BVDV and bosavirus persistent infection warrants further study.


Asunto(s)
Anticuerpos Antivirales/sangre , Diarrea Mucosa Bovina Viral/virología , Virus de la Diarrea Viral Bovina/inmunología , Infecciones por Parvoviridae/veterinaria , Parvovirus/inmunología , Animales , Bison , Diarrea Mucosa Bovina Viral/epidemiología , Bovinos , Coinfección/veterinaria , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Infecciones por Parvoviridae/microbiología , Parvovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/veterinaria , Estados Unidos/epidemiología
19.
Virology ; 553: 35-45, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220618

RESUMEN

We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.


Asunto(s)
ADN Complementario/aislamiento & purificación , Deltacoronavirus/genética , Porcinos/virología , Animales , Células Clonales , Infecciones por Coronavirus/patología , Deltacoronavirus/patogenicidad , Deltacoronavirus/fisiología , Endorribonucleasas/fisiología , Interferones/antagonistas & inhibidores , Replicación Viral
20.
Vaccines (Basel) ; 8(3)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899842

RESUMEN

Despite the availability of commercial vaccines which can effectively prevent clinical signs, porcine circovirus type 2 (PCV2) continues to remain an economically important swine virus, as strain drift, followed by displacement of new subtypes, occurs periodically. We had previously determined that the early antibody responses to the PCV2 capsid protein in infected pigs map to immunodominant but non-protective, linear B cell epitopes. In this study, two of the previously identified immunodominant epitopes were mutated in the backbone of a PCV2b infectious clone, to rationally restructure the immunogenic capsid protein. The rescued virus was used to immunize 3-week-old weanling piglets, followed by challenge with a virulent heterologous PCV2d strain. As expected, immunodominant antibody responses to the targeted epitopes were abrogated in vaccinated pigs, while a broadening of the virus neutralization responses was detected. Vaccinated pigs were completely protected against challenge viral replication, had reduced microscopic lesions in lymphoid organs and gained significantly more body weight when compared to unvaccinated pigs. Thus, the experimental PCV2 vaccine developed was highly effective against challenge, and, if adopted commercially, can potentially slow down or eliminate new strain creation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA