Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 361: 142529, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838862

RESUMEN

A novel nanocomposite consisting of Fe3O4-loaded tin oxyhydroxy-chloride is demonstrated as an efficient adsorbent for the removal of hexavalent chromium in compliance to the new drinking water regulation. This study introduces a continuous-flow production of the nanocomposite through the separate synthesis of (i) 40 nm Fe3O4 nanoparticles and (ii) multilayered spherical arrangements of a tin hydroxy-chloride identified as abhurite, before the application of a wet-blending process. The homogeneous distribution of Fe3O4 nanoparticles on the abhurite's morphology, features nanocomposite with magnetic response whereas the 10 % loaded nanocomposite preserves a Cr(VI) uptake capacity of 7.2 mg/g for residual concentrations below 25 µg/L. Kinetic and thermodynamic examination of the uptake evolution indicates a relative rapid Cr(VI) capture dominated by interparticle diffusion and a spontaneous endothermic process mediated by reduction to Cr(III). The efficiency of the optimized nanocomposite was validated in a pilot unit operating in a sequence of a stirring reactor and a rotary magnetic separator showing an alternative and competitive application path than typical fixed-bed filtration, which is supported by the absence of any acute cellular toxicity according to human kidney cell viability tests.


Asunto(s)
Cromo , Agua Potable , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Cromo/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Agua Potable/química , Adsorción , Cinética , Humanos , Termodinámica
2.
Environ Sci Technol ; 47(17): 9699-705, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23888913

RESUMEN

The development of a single-phase Fe/Mn oxy-hydroxide (δ-Fe0.76Mn0.24OOH), highly efficient at adsorbing both As(III) and As(V), is reported. Its synthesis involves the coprecipitation of FeSO4 and KMnO4 in a kilogram-scale continuous process, in acidic and strongly oxidizing environments. The produced material was identified as a manganese feroxyhyte in which tetravalent manganese is homogeneously distributed into the crystal unit, whereas a second-order hollow spherical morphology is favored. According to this structuration, the oxy-hydroxide maintains the high adsorption capacity for As(V) of a single Fe oxy-hydroxide combined with enhanced As(III) removal based on the oxidizing mediation of Mn(IV). Ion-exchange between arsenic species and sulfates as well as the strongly positive surface charge further facilitate arsenic adsorption. Batch adsorption tests performed in natural-like water indicate that Mn(IV)-feroxyhyte can remove 11.7 µg As(V)/mg and 6.7 µg As(III)/mg at equilibrium pH 7, before residual concentration overcomes the regulation limit of 10 µg As/L for drinking water. The improved efficiency of this material, its low cost, and the possibility for scaling-up its production to industry indicate the high practical impact and environmental importance of this novel adsorbent.


Asunto(s)
Arsénico/química , Agua Potable/química , Compuestos Férricos/química , Manganeso/química , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Cristalografía por Rayos X , Compuestos Férricos/síntesis química , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
3.
Environ Sci Pollut Res Int ; 30(14): 41983-41998, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640241

RESUMEN

In the present study, the ability of a modified CaCl2 zeolite (Ca-Z) to both increase Se(IV) availability and restrict Se(VI) mobility in soils is examined. As it was resulted from batch experiments and verified by X-ray absorption fine structure (XAFS) and X-ray fluorescence (XRF) spectroscopies, higher amounts of both Se species adsorbed on Ca-Z compared to natural zeolite (Z-N) forming outer-sphere complexes while the oxidation state did not alter during agitation of samples. Thereafter, Ca-Z was incorporated in six Greek soils, divided into acid and alkaline, at a 20% (w/w) rate and a series of equilibrium batch experiments were performed with soils alone and soils-Ca-Z mixtures to investigate sorption and desorption processes and mechanisms. The acid soils, either treated with Ca-Z or not, adsorbed higher amounts of Se(IV) than alkaline ones, whereas soils alone did not adsorb Se(VI) but impressively high adsorption of Se(VI) occurred in the Ca-Z-treated soils. Desorption of Se(IV) was higher from the Ca-Z-treated soils and especially from the acid soils. Higher distribution coefficients of desorption than the distribution coefficients of sorption were observed, clearly pointing to a hysteresis mechanism. The experimental data fitted with Langmuir and Freundlich isotherms. In the presence of Ca-Z, the Langmuir qm values increased indicating higher Se(IV) retention while Langmuir bL values decreased suggesting lower bonding strength and higher Se(IV) mobility. Overall, treating the soils with Ca-Z increased Se(IV) adsorption and mobility whereas it provided sites for Se(VI) adsorption that did not exist in the studied soils.


Asunto(s)
Contaminantes del Suelo , Zeolitas , Suelo/química , Adsorción , Agricultura , Contaminantes del Suelo/análisis
4.
Sci Total Environ ; 687: 1197-1206, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31412455

RESUMEN

Batch and continuous mode experiments were used to determine the influence of physic-chemicals characteristics of iron oxy-hydroxides (FeOOHs) on selenium adsorption. Batch experiments and continuous flow rapid small-scale column tests (RSSCTs) at pH 7 and NSF (National Sanitation Foundation) water matrix, showed that the adsorption capacity of FeOOHs for Se(IV) is strongly related to positive surface charge density (PSCD), and gradually increases when synthesis pH is lowered. The highest PSCD value of 3.25 mmol [OH-]/g was observed at synthesis pH 2.5 (FeOOH/2.5) and the lowest, 0.45 mmol [OH-]/g, was observed at synthesis pH 9 (FeOOH/9). A thermodynamic study verified the endothermic (ΔΗ° 21.4 kJ/mol) chemisorption of Se(IV) by the qualified FeOOH/2.5. EXAFS data showed that Se(IV) is involved in three types of surface complexes: bidentate mononuclear edge-sharing (1E) and two types of binuclear inner-sphere (2C) linkage between the SeO32- pyramids, and Fe(O,OH)6 octahedra. The FeOOHs were evaluated by their adsorption capacity (Q10) at residual concentrations equal to the EU drinking water regulation limit of 10 µg/L, e.g. in conditions implemented in full-scale water treatment plants. The qualified FeOOH/2.5 was found to be the most effective for Se(IV) adsorption with a Q10 value 4.3 mg Se(IV)/g. In contrast, the Q10 value for Se(VI) was almost three orders of magnitude lower (10 µg Se(VI)/g) than that for Se(IV). Finally, regeneration experiments showed that FeOOHs reuse for Se(IV) removal is economically feasible and the recovery of selenium by precipitation as elemental Se contributes to green chemistry.

5.
Sci Total Environ ; 551-552: 246-53, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26878637

RESUMEN

The feasibility of implementing a Sn(II) oxy-hydroxide (Sn6O4(OH)4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn6O4(OH)4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn6O4(OH)4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10µg/L for drinking water. Moreover, an uptake capacity of 7.2µg/mg at breakthrough concentration of 10µg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ((2)C) and monodentate ((1)V) geometries, at the expense of the present bidentate mononuclear ((2)E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn6O4(OH)4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the (2)C and (1)V configurations, which enhances the safe disposal of spent adsorbents.


Asunto(s)
Cromo/química , Agua Potable/química , Compuestos de Estaño/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Cromo/análisis , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA