Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Neurochem ; 166(1): 58-75, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35149997

RESUMEN

Abnormal phase transitions have been implicated in the occurrence of proteinopathies. Disordered proteins with nucleic acidbinding ability drive the formation of reversible micron-sized condensates capable of controlling nucleic acid processing/transport. This mechanism, achieved via liquid-liquid phase separation (LLPS), underlies the formation of long-studied membraneless organelles (e.g., nucleolus) and various transient condensates formed by driver proteins. The prion protein (PrP) is not a classical nucleic acid-binding protein. However, it binds nucleic acids with high affinity, undergoes nucleocytoplasmic shuttling, contains a long intrinsically disordered region rich in glycines and evenly spaced aromatic residues, among other biochemical/biophysical properties of bona fide drivers of phase transitions. Because of this, our group and others have characterized LLPS of recombinant PrP. In vitro phase separation of PrP is modulated by nucleic acid aptamers, and depending on the aptamer conformation, the liquid droplets evolve to solid-like species. Herein, we discuss recent studies and previous evidence supporting PrP phase transitions. We focus on the central role of LLPS related to PrP physiology and pathology, with a special emphasis on the interaction of PrP with different ligands, such as proteins and nucleic acids, which can play a role in prion disease pathogenesis. Finally, we comment on therapeutic strategies directed at the non-functional phase separation that could potentially tackle prion diseases or other protein misfolding disorders.


Asunto(s)
Ácidos Nucleicos , Enfermedades por Prión , Priones , Animales , Proteínas Priónicas/metabolismo , Priones/metabolismo , Mamíferos/metabolismo , Ácidos Nucleicos/metabolismo
2.
Biophys J ; 120(14): 2814-2827, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34197802

RESUMEN

The nucleocapsid (N) protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. The N protein N-terminal domain (N-NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRSs), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of the severe acute respiratory syndrome coronavirus 2 N-NTD to nonspecific (NS) and TRS dsRNAs. We probed dsRNAs' Watson-Crick basepairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, triggering melting initiation. dsRNA destabilization driven by N-NTD was more efficient for dsTRSs than dsNS. N-NTD dynamics, especially a tweezer-like motion of ß2-ß3 and Δ2-ß5 loops, seems to play a key role in Watson-Crick basepairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD/dsRNA), matching MD simulations and raising different possibilities for N-NTD action: 1) two N-NTD arms of dimeric N would bind to two different RNA sites, either closely or spatially spaced in the viral genome, in a cooperative manner; and 2) monomeric N-NTD would be active, opening up the possibility of a regulatory dissociation event.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteínas de la Nucleocápside/genética , Nucleoproteínas , ARN
3.
FASEB J ; 34(1): 365-385, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914616

RESUMEN

Structural conversion of cellular prion protein (PrPC) into scrapie PrP (PrPSc) and subsequent aggregation are key events associated with the onset of transmissible spongiform encephalopathies (TSEs). Experimental evidence supports the role of nucleic acids (NAs) in assisting this conversion. Here, we asked whether PrP undergoes liquid-liquid phase separation (LLPS) and if this process is modulated by NAs. To this end, two 25-mer DNA aptamers, A1 and A2, were selected against the globular domain of recombinant murine PrP (rPrP90-231) using SELEX methodology. Multiparametric structural analysis of these aptamers revealed that A1 adopts a hairpin conformation. Aptamer binding caused partial unfolding of rPrP90-231 and modulated its ability to undergo LLPS and fibrillate. In fact, although free rPrP90-231 phase separated into large droplets, aptamer binding increased the number of droplets but noticeably reduced their size. Strikingly, a modified A1 aptamer that does not adopt a hairpin structure induced formation of amyloid fibrils on the surface of the droplets. We show here that PrP undergoes LLPS, and that the PrP interaction with NAs modulates phase separation and promotes PrP fibrillation in a NA structure and concentration-dependent manner. These results shed new light on the roles of NAs in PrP misfolding and TSEs.


Asunto(s)
Amiloide/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Extracción Líquido-Líquido/métodos , Enfermedades por Prión/patología , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Animales , Ratones , Conformación de Ácido Nucleico , Enfermedades por Prión/metabolismo , Proteínas Priónicas/aislamiento & purificación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnica SELEX de Producción de Aptámeros
4.
Biochemistry ; 58(41): 4183-4194, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31566355

RESUMEN

Cellular retinoic acid-binding protein 2 (CRABP2) delivers all-trans retinoic acid (atRA) to retinoic acid receptors (RARs), allowing for the activation of specific gene transcription. The structural similarities between free and atRA-bound CRABP2 raise the questions of how atRA binding occurs and how the atRA:CRABP2 complex is recognized by downstream binding partners. Thus, to gain insights into these questions, we conducted a detailed atRA-CRABP2 interaction study using nuclear magnetic resonance spectroscopy. The data showed that free CRABP2 displays widespread intermediate-time scale dynamics that is effectively suppressed upon atRA binding. This effect is mirrored by the fast-time scale dynamics of CRABP2. Unexpectedly, CRABP2 rigidification in response to atRA binding leads to the stabilization of a homodimerization interface, which encompasses residues located on helix α2 and the ßC-ßD loop as well as residues on strands ßI-ßA and the ßH-ßI loop. Critically, this rigidification also affects CRABP2's nuclear localization signal and RAR-binding motif, suggesting that the loss of conformational entropy upon atRA binding may be the key for the diverse cellular functions of CRABP2.


Asunto(s)
Multimerización de Proteína , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo , Tretinoina/química , Tretinoina/metabolismo , Núcleo Celular/metabolismo , Cristalización , Entropía , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Unión Proteica , Estructura Secundaria de Proteína , Receptores de Ácido Retinoico/genética
5.
J Cell Biochem ; 120(4): 5377-5385, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30320908

RESUMEN

NSD3s, the proline-tryptophan-tryptophan-proline (PWWP) domain-containing, short isoform of the human oncoprotein NSD3, displays high transforming properties. Overexpression of human NSD3s or the yeast protein Pdp3 in Saccharomyces cerevisiae induces similar metabolic changes, including increased growth rate and sensitivity to oxidative stress, accompanied by decreased oxygen consumption. Here, we set out to elucidate the biochemical pathways leading to the observed metabolic phenotype by analyzing the alterations in yeast metabolome in response to NSD3s or Pdp3 overexpression using 1 H nuclear magnetic resonance (NMR) metabolomics. We observed an increase in aspartate and alanine, together with a decrease in arginine levels, on overexpression of NSD3s or Pdp3, suggesting an increase in the rate of glutaminolysis. In addition, certain metabolites, including glutamate, valine, and phosphocholine were either NSD3s or Pdp3 specific, indicating that additional metabolic pathways are adapted in a protein-dependent manner. The observation that certain metabolic pathways are differentially regulated by NSD3s and Pdp3 suggests that, despite the structural similarity between their PWWP domains, the two proteins act by unique mechanisms and may recruit different downstream signaling complexes. This study establishes for the first time a functional link between the human oncoprotein NSD3s and cancer metabolic reprogramming.


Asunto(s)
Histona Acetiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Metaboloma/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alanina/genética , Ácido Aspártico/genética , Regulación de la Expresión Génica/genética , Humanos , Metabolómica/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Prolina/genética , Dominios Proteicos/genética , Transducción de Señal/genética
6.
J Enzyme Inhib Med Chem ; 34(1): 1100-1109, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31124384

RESUMEN

Inhibition of Leishmania arginase leads to a decrease in parasite growth and infectivity and thus represents an attractive therapeutic strategy. We evaluated the inhibitory potential of selected naturally occurring phenolic substances on Leishmania infantum arginase (ARGLi) and investigated their antileishmanial activity in vivo. ARGLi exhibited a Vmax of 0.28 ± 0.016 mM/min and a Km of 5.1 ± 1.1 mM for L-arginine. The phenylpropanoids rosmarinic acid and caffeic acid (100 µM) showed percentages of inhibition of 71.48 ± 0.85% and 56.98 ± 5.51%, respectively. Moreover, rosmarinic acid and caffeic acid displayed the greatest effects against L. infantum with IC50 values of 57.3 ± 2.65 and 60.8 ± 11 µM for promastigotes, and 7.9 ± 1.7 and 21.9 ± 5.0 µM for intracellular amastigotes, respectively. Only caffeic acid significantly increased nitric oxide production by infected macrophages. Altogether, our results broaden the current spectrum of known arginase inhibitors and revealed promising drug candidates for the therapy of visceral leishmaniasis.


Asunto(s)
Antiprotozoarios/farmacología , Arginasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Leishmania infantum/efectos de los fármacos , Fenoles/farmacología , Animales , Antiprotozoarios/química , Arginasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Leishmania infantum/enzimología , Leishmania infantum/crecimiento & desarrollo , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Fenoles/química , Células RAW 264.7 , Relación Estructura-Actividad
7.
J Biomol NMR ; 72(3-4): 179-192, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30535889

RESUMEN

Human antigen R (HuR) functions as a major post-transcriptional regulator of gene expression through its RNA-binding activity. HuR is composed by three RNA recognition motifs, namely RRM1, RRM2, and RRM3. The two N-terminal RRM domains are disposed in tandem and contribute mostly to HuR interaction with adenine and uracil-rich elements (ARE) in mRNA. Here, we used a combination of NMR and electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to characterize the structure, dynamics, RNA recognition, and dimerization of HuR RRM1. Our solution structure reveals a canonical RRM fold containing a 19-residue, intrinsically disordered N-terminal extension, which is not involved in RNA binding. NMR titration results confirm the primary RNA-binding site to the two central ß-strands, ß1 and ß3, for a cyclooxygenase 2 (Cox2) ARE I-derived, 7-nucleotide RNA ligand. We show by 15N relaxation that, in addition to the N- and C-termini, the ß2-ß3 loop undergoes fast backbone dynamics (ps-ns) both in the free and RNA-bound state, indicating that no structural ordering happens upon RNA interaction. ESI-IMS-MS reveals that HuR RRM1 dimerizes, however dimer population represents a minority. Dimerization occurs via the α-helical surface, which is oppositely orientated to the RNA-binding ß-sheet. By using a DNA analog of the Cox2 ARE I, we show that DNA binding stabilizes HuR RRM1 monomer and shifts the monomer-dimer equilibrium toward the monomeric species. Altogether, our results deepen the current understanding of the mechanism of RNA recognition employed by HuR.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Proteínas de Unión al ARN/química , Proteínas Supresoras de Tumor/química , Sitios de Unión , Dimerización , Humanos , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , ARN/química , ARN/metabolismo , Ribonucleósido Difosfato Reductasa
8.
Pharm Biol ; 55(1): 1780-1786, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28524774

RESUMEN

CONTEXT: Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease characterized by lesional polymorphism and the commitment of skin surface. Previous reports demonstrated that the Citrus genus possess antimicrobial activity. OBJECTIVE: This study evaluated the anti-L. amazonensis activity of Citrus sinensis (L.) Osbeck (Rutaceae) extracts. MATERIALS AND METHODS: Citrus sinensis dried leaves were subjected to maceration with hexane (CH), ethyl acetate (CEA), dichloromethane/ethanol (CD/Et - 1:1) or ethanol/water (CEt/W - 7:3). Leishmania amazonensis promastigotes were treated with C. sinensis extracts (1-525 µg/mL) for 120 h at 27 °C. Ultrastructure alterations of treated parasites were evaluated by transmission electron microscopy. Cytotoxicity of the extracts was assessed on RAW 264.7 and J774.G8 macrophages after 48-h treatment at 37 °C using the tetrazolium assay. In addition, Leishmania-infected macrophages were treated with CH and CD/Et (10-80 µg/mL). RESULTS: CH, CD/Et and CEA displayed antileishmanial activity with 50% inhibitory activity (IC50) of 25.91 ± 4.87, 54.23 ± 3.78 and 62.74 ± 5.04 µg/mL, respectively. Parasites treated with CD/Et (131.2 µg/mL) presented severe alterations including mitochondrial swelling, lipid body formation and intense cytoplasmic vacuolization. CH and CD/Et demonstrated cytotoxic effects similar to that of amphotericin B in the anti-amastigote assays (SI of 2.16, 1.98 and 1.35, respectively). Triterpene amyrins were the main substances in CH and CD/Et extracts. In addition, 80 µg/mL of CD/Et reduced the number of intracellular amastigotes and the percentage of infected macrophages in 63% and 36%, respectively. CONCLUSION: The results presented here highlight C. sinensis as a promising source of antileishmanial agents.


Asunto(s)
Antiprotozoarios/farmacología , Citrus sinensis/química , Leishmania/efectos de los fármacos , Macrófagos/parasitología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/toxicidad , Supervivencia Celular/efectos de los fármacos , Citrus sinensis/toxicidad , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Leishmania/crecimiento & desarrollo , Leishmania/ultraestructura , Ratones , Pruebas de Sensibilidad Parasitaria , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Hojas de la Planta/toxicidad , Plantas Medicinales , Células RAW 264.7 , Solventes/química
9.
J Biol Chem ; 290(46): 27660-79, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26381411

RESUMEN

Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético/análogos & derivados , Amiloide/química , Dopamina/metabolismo , Lípidos de la Membrana/química , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/química , Ácido 3,4-Dihidroxifenilacético/química , Ácido 3,4-Dihidroxifenilacético/metabolismo , Ácido 3,4-Dihidroxifenilacético/toxicidad , Amiloide/metabolismo , Animales , Membrana Celular/química , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Lisina/química , Lípidos de la Membrana/metabolismo , Oxidación-Reducción , Enfermedad de Parkinson/patología , Ratas , Bases de Schiff/química , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/metabolismo
10.
Protein Expr Purif ; 121: 31-40, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26792557

RESUMEN

RhlR is a 241-residue quorum sensing receptor that controls the expression of a myriad of virulence genes in Pseudomonas aeruginosa. Here, the DNA sequence encoding the carboxi-terminal DNA-binding domain of RhlR was cloned into the pET-RP1B plasmid and expressed as an N-terminal fusion protein to the expression/purification Thio6His6 tag. The fusion construct expressed insolubly in Escherichia coli BL21 (DE3) cells. The recombinant protein was extracted from the bacterial inclusion bodies and refolded in the presence of the charged amino acids l-arginine and l-glutamate. The refolded protein was purified by a combination of Ni(+2)-affinity and size exclusion chromatography, allowing the production of 2 mg of highly purified protein (>95% purity) per 5 mg of wet cells derived from 1 L culture. (1)H 1D NMR analysis revealed that the recombinant protein is folded. Moreover, a fluorescence anisotropy DNA-binding assay showed that the refolded protein is functional, as it recognizes the rhlAB promoter. This is the first time that a domain of the quorum sensing regulator RhlR was produced in sufficient amounts for structural studies, enabling the investigation of the molecular basis for RhlR specific interaction with DNA promoters.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Pliegue de Proteína , Pseudomonas aeruginosa/genética
11.
Mediators Inflamm ; 2015: 835910, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26538837

RESUMEN

Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease.


Asunto(s)
Productos Biológicos/química , Leishmaniasis/inmunología , Animales , Antiinflamatorios/química , Antineoplásicos/química , Comunicación Celular , Citocinas/metabolismo , Diseño de Fármacos , Humanos , Inflamación , Leishmania , Leucotrieno B4/química , Extractos Vegetales/química
12.
An Acad Bras Cienc ; 87(4): 2189-203, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26247154

RESUMEN

Bacteria are able to synchronize the population behavior in order to regulate gene expression through a cell-to-cell communication mechanism called quorum sensing. This phenomenon involves the production, detection and the response to extracellular signaling molecules named autoinducers, which directly or indirectly regulate gene expression in a cell density-dependent manner. Quorum sensing may control a wide range of biological processes in bacteria, such as bioluminescence, virulence factor production, biofilm formation and antibiotic resistance. The autoinducers are recognized by specific receptors that can either be membrane-bound histidine kinase receptors, which work by activating cognate cytoplasmic response regulators, or cytoplasmic receptors acting as transcription factors. In this review, we focused on the cytosolic quorum sensing regulators whose three-dimensional structures helped elucidate their mechanisms of action. Structural studies of quorum sensing receptors may enable the rational design of inhibitor molecules. Ultimately, this approach may represent an effective alternative to treat infections where classical antimicrobial therapy fails to overcome the microorganism virulence.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Citosol/fisiología , Percepción de Quorum/fisiología , Transducción de Señal/fisiología
13.
Biochemistry ; 53(18): 2890-902, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24738963

RESUMEN

One of the ancestral features of thioredoxins is the presence of a water cavity. Here, we report that a largely hydrated, conserved, buried aspartic acid in the water cavity modulates the dynamics of the interacting loops of yeast thioredoxin 1 (yTrx1). It is well-established that the aspartic acid, Asp24 for yTrx1, works as a proton acceptor in the reduction of the target protein. We propose a complementary role for Asp24 of coupling hydration and conformational motion of the water cavity and interacting loops. The intimate contact between the water cavity and the interacting loops means that motion at the water cavity will affect the interacting loops and vice versa. The D24N mutation alters the conformational equilibrium for both the oxidized and reduced states, quenching the conformational motion in the water cavity. By measuring the hydration and molecular dynamics simulation of wild-type yTrx1 and the D24N mutant, we showed that Asn24 is more exposed to water than Asp24 and the water cavity is smaller in the mutant, closing the inner part of the water cavity. We discuss how the conformational equilibrium contributes to the mechanism of catalysis and H(+) exchange.


Asunto(s)
Tiorredoxinas/química , Asparagina/química , Ácido Aspártico/química , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Protones , Saccharomyces cerevisiae/genética , Tiorredoxinas/genética , Agua
14.
Bioorg Med Chem Lett ; 24(14): 3194-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24835632

RESUMEN

Thioflavin-T (ThT) is a cationic benzothiazole dye that displays enhanced fluorescence upon binding to amyloid fibrils. This property makes ThT the current reagent of choice for the quantification of amyloid fibrils. Herein, we investigate the main pitfalls associated with the use of ThT-based assays to monitor the fibrillation of α-synuclein (α-syn), a protein linked to Parkinson's disease and other α-synucleinopathies. We demonstrated for the first time that ThT interacts with α-syn disordered monomer and accelerates the protein fibrillation in vitro. As a consequence, misleading conclusions may arise from the use of ThT-based real-time assays in the evaluation of anti-fibrillogenic compounds. Interestingly, NMR experiments indicated that C-terminal domain of α-syn is the main region perturbed by ThT interaction, similarly to that found for the pesticide paraquat, a well-documented accelerator of α-syn fibrillation. Moreover, we demonstrated that certain potent inhibitors of α-syn fibrillation, such as oxidized catecholamines and polyphenols, undergo spontaneous oxidation in aqueous solution, generating compounds that strongly quench ThT fluorescence. In light of these findings, we alert for possible artifacts associated to the measure of the anti-fibrillogenic activity based only on ThT fluorescence approach.


Asunto(s)
Amiloide/análisis , Amiloide/efectos de los fármacos , Tiazoles/química , Tiazoles/farmacología , alfa-Sinucleína/efectos de los fármacos , alfa-Sinucleína/metabolismo , Amiloide/química , Amiloide/metabolismo , Artefactos , Benzotiazoles , Humanos , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Tiazoles/análisis , Tiazoles/metabolismo , alfa-Sinucleína/química
15.
Methods Mol Biol ; 2551: 605-631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36310228

RESUMEN

Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies. Phase separation is reproducible in vitro by mixing the target recombinant protein with specific nucleic acids at various stoichiometric ratios and then examined by microscopy and nanotracking methods presented herein. We describe protocols to qualitatively assess hallmarks of protein-rich condensates, characterize their structure using intrinsic and extrinsic dyes, quantify them, and analyze their morphology over time. Analysis by nanoparticle tracking provides information on the concentration and diameter of high-order protein oligomers formed in the presence of nucleic acid. Using the model protein (globular domain of recombinant murine PrP) and DNA aptamers (high-affinity oligonucleotides with 25 nucleotides in length), we provide examples of a systematic screening of liquid-liquid phase separation in vitro.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas Intrínsecamente Desordenadas , Nanopartículas , Ácidos Nucleicos , Ratones , Animales , Microscopía , Proteínas Recombinantes , Proteínas Intrínsecamente Desordenadas/química
16.
Biomol NMR Assign ; 17(1): 143-149, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37145295

RESUMEN

AtGRP2 (Arabidopsis thaliana glycine-rich protein 2) is a 19-kDa RNA-binding glycine-rich protein that regulates key processes in A. thaliana. AtGRP2 is a nucleo-cytoplasmic protein with preferential expression in developing tissues, such as meristems, carpels, anthers, and embryos. AtGRP2 knockdown leads to an early flowering phenotype. In addition, AtGRP2-silenced plants exhibit a reduced number of stamens and abnormal development of embryos and seeds, suggesting its involvement in plant development. AtGRP2 expression is highly induced by cold and abiotic stresses, such as high salinity. Moreover, AtGRP2 promotes double-stranded DNA/RNA denaturation, indicating its role as an RNA chaperone during cold acclimation. AtGRP2 is composed of an N-terminal cold shock domain (CSD) followed by a C-terminal flexible region containing two CCHC-type zinc fingers interspersed with glycine-rich sequences. Despite its functional relevance in flowering time regulation and cold adaptation, the molecular mechanisms employed by AtGRP2 are largely unknown. To date, there is no structural information regarding AtGRP2 in the literature. Here, we report the 1H, 15N, and 13C backbone and side chain resonance assignments, as well as the chemical shift-derived secondary structure propensities, of the N-terminal cold shock domain of AtGRP2, encompassing residues 1-90. These data provide a framework for AtGRP2-CSD three-dimensional structure, dynamics, and RNA binding specificity investigation, which will shed light on its mechanism of action.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ARN , Proteínas de Arabidopsis/química , Respuesta al Choque por Frío , Glicina/metabolismo , Resonancia Magnética Nuclear Biomolecular , ARN/metabolismo , Proteínas de Unión al ARN/química
17.
Biochemistry ; 51(37): 7330-41, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22928810

RESUMEN

NLRP4 is a member of the nucleotide-binding and leucine-rich repeat receptor (NLR) family of cytosolic receptors and a member of an inflammation signaling cascade. Here, we present the crystal structure of the NLRP4 pyrin domain (PYD) at 2.3 Å resolution. The NLRP4 PYD is a member of the death domain (DD) superfamily and adopts a DD fold consisting of six α-helices tightly packed around a hydrophobic core, with a highly charged surface that is typical of PYDs. Importantly, however, we identified several differences between the NLRP4 PYD crystal structure and other PYD structures that are significant enough to affect NLRP4 function and its interactions with binding partners. Notably, the length of helix α3 and the α2-α3 connecting loop in the NLRP4 PYD are unique among PYDs. The apoptosis-associated speck-like protein containing a CARD (ASC) is an adaptor protein whose interactions with a number of distinct PYDs are believed to be critical for activation of the inflammatory response. Here, we use co-immunoprecipitation, yeast two-hybrid, and nuclear magnetic resonance chemical shift perturbation analysis to demonstrate that, despite being important for activation of the inflammatory response and sharing several similarities with other known ASC-interacting PYDs (i.e., ASC2), NLRP4 does not interact with the adaptor protein ASC. Thus, we propose that the factors governing homotypic PYD interactions are more complex than the currently accepted model, which states that complementary charged surfaces are the main determinants of PYD-PYD interaction specificity.


Asunto(s)
Modelos Moleculares , Pliegue de Proteína , Proteínas Represoras/química , Proteínas Adaptadoras Transductoras de Señales , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Proteínas Represoras/genética , Relación Estructura-Actividad
18.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166475, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35777688

RESUMEN

The overproduction of reactive oxygen species (ROS) induces oxidative stress, a well-known process associated with aging and several human pathologies, such as cancer and neurodegenerative diseases. A large number of synthetic compounds have been described as antioxidant enzyme mimics, capable of eliminating ROS and/or reducing oxidative damage. In this study, we investigated the antioxidant activity of a water-soluble 1,10-phenantroline-octanediaoate Mn2+-complex on cells under oxidative stress, and assessed its capacity to attenuate alpha-synuclein (aSyn) toxicity and aggregation, a process associated with increased oxidative stress. This Mn2+-complex exhibited a significant antioxidant potential, reducing intracelular oxidation and increasing oxidative stress resistance in S. cerevisiae cells and in vivo, in G. mellonella, increasing the activity of the intracellular antioxidant enzymes superoxide dismutase and catalase. Strikingly, the Mn2+-complex reduced both aSyn oligomerization and aggregation in human cell cultures and, using NMR and DFT/molecular docking we confirmed its interaction with the C-terminal region of aSyn. In conclusion, the Mn2+-complex appears as an excellent lead for the design of new phenanthroline derivatives as alternative compounds for preventing oxidative damages and oxidative stress - related diseases.


Asunto(s)
Antioxidantes , Manganeso , Fenantrolinas , alfa-Sinucleína , Antioxidantes/farmacología , Manganeso/farmacología , Simulación del Acoplamiento Molecular , Fenantrolinas/farmacología , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae , Agua
19.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077748

RESUMEN

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Asunto(s)
COVID-19/virología , Ácidos Nucleicos/metabolismo , Proteínas de la Nucleocápside/metabolismo , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/fisiología , Sitios de Unión , ADN/química , ADN/metabolismo , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Ácidos Nucleicos/química , Proteínas de la Nucleocápside/química , Unión Proteica , ARN/química , ARN/metabolismo , Análisis Espectral , Relación Estructura-Actividad
20.
J Biol Chem ; 285(35): 27402-27410, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20547486

RESUMEN

The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-alpha-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix alpha3 and loop alpha2-alpha3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas del Citoesqueleto , Pliegue de Proteína , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pirina , Electricidad Estática , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA