Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cheminform ; 15(1): 64, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468968

RESUMEN

The identification of human proteins that are amenable to pharmacologic modulation without significant off-target effects remains an important unsolved challenge. Computational methods have been devised to identify features which distinguish between "druggable" and "undruggable" proteins, finding that protein sequence, tissue and cellular localization, biological role, and position in the protein-protein interaction network are all important discriminant factors. However, many prior efforts to automate the assessment of protein druggability suffer from low performance or poor interpretability. We developed a neural network-based machine learning model capable of generating druggability sub-scores based on each of four distinct categories, combining them to form an overall druggability score. The model achieves an excellent performance in separating drugged and undrugged proteins in the human proteome, with an area under the receiver operating characteristic (AUC) of 0.95. Our use of multiple sub-scores allows the assessment of potential protein targets of interest based on distinct contributors to druggability, leading to a more interpretable and holistic model to identify novel targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA