Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Biol Sci ; 291(2014): 20231408, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196349

RESUMEN

Sleep benefits motor memory consolidation, which is mediated by sleep spindle activity and associated memory reactivations during non-rapid eye movement (NREM) sleep. However, the particular role of NREM2 and NREM3 sleep spindles and the mechanisms triggering this memory consolidation process remain unclear. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were collected during night-time sleep following the learning of a motor sequence task. Adopting a time-based clustering approach, we provide evidence that spindles iteratively occur within clustered and temporally organized patterns during both NREM2 and NREM3 sleep. However, the clustering of spindles in trains is related to motor memory consolidation during NREM2 sleep only. Altogether, our findings suggest that spindles' clustering and rhythmic occurrence during NREM2 sleep may serve as an intrinsic rhythmic sleep mechanism for the timed reactivation and subsequent consolidation of motor memories, through synchronized oscillatory activity within a subcortical-cortical network involved during learning.


Asunto(s)
Consolidación de la Memoria , Aprendizaje , Análisis por Conglomerados , Memoria , Sueño
2.
Neuroimage ; 283: 120395, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832707

RESUMEN

Brain decoding aims to infer cognitive states from patterns of brain activity. Substantial inter-individual variations in functional brain organization challenge accurate decoding performed at the group level. In this paper, we tested whether accurate brain decoding models can be trained entirely at the individual level. We trained several classifiers on a dense individual functional magnetic resonance imaging (fMRI) dataset for which six participants completed the entire Human Connectome Project (HCP) task battery >13 times over ten separate fMRI sessions. We evaluated nine decoding methods, from Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP) to Graph Convolutional Neural Networks (GCN). All decoders were trained to classify single fMRI volumes into 21 experimental conditions simultaneously, using ∼7 h of fMRI data per participant. The best prediction accuracies were achieved with GCN and MLP models, whose performance (57-67 % accuracy) approached state-of-the-art accuracy (76 %) with models trained at the group level on >1 K hours of data from the original HCP sample. Our SVM model also performed very well (54-62 % accuracy). Feature importance maps derived from MLP -our best-performing model- revealed informative features in regions relevant to particular cognitive domains, notably in the motor cortex. We also observed that inter-subject classification achieved substantially lower accuracy than subject-specific models, indicating that our decoders learned individual-specific features. This work demonstrates that densely-sampled neuroimaging datasets can be used to train accurate brain decoding models at the individual level. We expect this work to become a useful benchmark for techniques that improve model generalization across multiple subjects and acquisition conditions.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Aprendizaje
3.
Neuroimage ; 169: 419-430, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277652

RESUMEN

Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions.


Asunto(s)
Electroencefalografía/métodos , Neuroimagen Funcional/métodos , Hipocampo/fisiología , Imagen por Resonancia Magnética/métodos , Consolidación de la Memoria/fisiología , Actividad Motora/fisiología , Red Nerviosa/fisiología , Putamen/fisiología , Fases del Sueño/fisiología , Tálamo/fisiología , Adulto , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Putamen/diagnóstico por imagen , Aprendizaje Seriado/fisiología , Tálamo/diagnóstico por imagen , Adulto Joven
4.
PLoS One ; 18(11): e0290158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37910557

RESUMEN

Videogames are emerging as a promising experimental paradigm in neuroimaging. Acquiring gameplay in a scanner remains challenging due to the lack of a scanner-compatible videogame controller that provides a similar experience to standard, commercial devices. In this paper, we introduce a videogame controller designed for use in the functional magnetic resonance imaging as well as magnetoencephalography. The controller is made exclusively of 3D-printed and commercially available parts. We evaluated the quality of our controller by comparing it to a non-MRI compatible controller that was kept outside the scanner. The comparison of response latencies showed reliable button press accuracies of adequate precision. Comparison of the subjects' motion during fMRI recordings of various tasks showed that the use of our controller did not increase the amount of motion produced compared to a regular MR compatible button press box. Motion levels during an ecological videogame task were of moderate amplitude. In addition, we found that the controller only had marginal effect on temporal SNR in fMRI, as well as on covariance between sensors in MEG, as expected due to the use of non-magnetic building materials. Finally, the reproducibility of the controller was demonstrated by having team members who were not involved in the design build a reproduction using only the documentation. This new videogame controller opens new avenues for ecological tasks in fMRI, including challenging videogames and more generally tasks with complex responses. The detailed controller documentation and build instructions are released under an Open Source Hardware license to increase accessibility, and reproducibility and enable the neuroimaging research community to improve or modify the controller for future experiments.


Asunto(s)
Magnetoencefalografía , Juegos de Video , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Neuroimagen
5.
Elife ; 82019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30882348

RESUMEN

Functional magnetic resonance imaging (fMRI) studies investigating the acquisition of sequential motor skills in humans have revealed learning-related functional reorganizations of the cortico-striatal and cortico-cerebellar motor systems accompanied with an initial hippocampal contribution. Yet, the functional significance of these activity-level changes remains ambiguous as they convey the evolution of both sequence-specific knowledge and unspecific task ability. Moreover, these changes do not specifically assess the occurrence of learning-related plasticity. To address these issues, we investigated local circuits tuning to sequence-specific information using multivariate distances between patterns evoked by consolidated or newly acquired motor sequences production. The results reveal that representations in dorsolateral striatum, prefrontal and secondary motor cortices are greater when executing consolidated sequences than untrained ones. By contrast, sequence representations in the hippocampus and dorsomedial striatum becomes less engaged. Our findings show, for the first time in humans, that complementary sequence-specific motor representations evolve distinctively during critical phases of skill acquisition and consolidation.


Asunto(s)
Vías Eferentes/fisiología , Aprendizaje , Red Nerviosa/fisiología , Plasticidad Neuronal , Adolescente , Cuerpo Estriado/fisiología , Femenino , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/fisiología , Adulto Joven
6.
Neuroscience ; 402: 104-115, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30615913

RESUMEN

Ample evidence suggests that consolidation of the memory trace associated with a newly acquired motor sequence is supported by thalamo-cortical spindle activity during subsequent sleep, as well as functional changes in a distributed cortico-striatal network. To date, however, no studies have investigated whether the structural white matter connections between these regions affect motor sequence memory consolidation in relation with sleep spindles. Here, we used diffusion weighted imaging (DWI) tractography to reconstruct the major fascicles of the cortico-striato-pallido-thalamo-cortical loop in both young and older participants who were trained on an explicit finger sequence learning task before and after a daytime nap. Thereby, this allowed us to examine whether post-learning sleep spindles measured using polysomnographic recordings interact with consolidation processes and this specific neural network. Our findings provide evidence corroborating the critical role of NREM2 thalamo-cortical sleep spindles in motor sequence memory consolidation, and show that the post-learning changes in these neurophysiological events relate specifically to white matter characteristics in thalamo-cortical fascicles. Moreover, we demonstrate that microstructure along this fascicle relates indirectly to offline gains in performance through an increase of spindle density over motor-related cortical areas. These results suggest that the integrity of thalamo-cortical projections, via their impact on sleep spindle generation, may represent one of the critical mechanisms modulating the expression of sleep-dependent offline gains following motor sequence learning in healthy adults.


Asunto(s)
Consolidación de la Memoria/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Sueño , Tálamo/fisiología , Sustancia Blanca/fisiología , Adulto , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/fisiología , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Electroencefalografía , Humanos , Persona de Mediana Edad , Actividad Motora , Corteza Motora/anatomía & histología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Polisomnografía , Tálamo/anatomía & histología , Sustancia Blanca/anatomía & histología , Adulto Joven
7.
PLoS One ; 14(1): e0210876, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30653576

RESUMEN

Reconsolidation theory posits that upon retrieval, consolidated memories are destabilized and need to be restabilized in order to persist. It has been suggested that experience with a competitive task immediately after memory retrieval may interrupt these restabilization processes leading to memory loss. Indeed, using a motor sequence learning paradigm, we have recently shown that, in humans, interference training immediately after active task-based retrieval of the consolidated motor sequence knowledge may negatively affect its performance levels. Assessing changes in tapping pattern before and after interference training, we also demonstrated that this performance deficit more likely indicates a genuine memory loss rather than an initial failure of memory retrieval. Here, applying a similar approach, we tested the necessity of the hypothetical retrieval-induced destabilization of motor memory to allow its impairment. The impact of memory retrieval on performance of a new motor sequence knowledge acquired during the interference training was also evaluated. Similar to the immediate post-retrieval interference, interference training alone without the preceding active task-based memory retrieval was also associated with impairment of the pre-established motor sequence memory. Performance levels of the sequence trained during the interference training, on the other hand, were impaired only if this training was given immediately after memory retrieval. Noteworthy, an 8-hour interval between memory retrieval and interference allowed to express intact performance levels for both sequences. The current results suggest that susceptibility of the consolidated motor memory to behavioral interference is independent of its active task-based retrieval. Differential effects of memory retrieval on performance levels of the new motor sequence encoded during the interference training further suggests that memory retrieval may influence the way new information is stored by facilitating its integration within the retrieved memory trace. Thus, impairment of the pre-established motor memory may reflect interference from a competing memory trace rather than involve interruption of reconsolidation.


Asunto(s)
Consolidación de la Memoria/fisiología , Adulto , Femenino , Humanos , Aprendizaje/fisiología , Masculino , Memoria/fisiología , Recuerdo Mental/fisiología , Modelos Psicológicos , Destreza Motora/fisiología , Desempeño Psicomotor/fisiología , Análisis y Desempeño de Tareas , Adulto Joven
9.
Front Neurosci ; 12: 268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755312

RESUMEN

Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data.

10.
Sleep ; 41(9)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137521

RESUMEN

There is now ample evidence that sleep spindles play a critical role in the consolidation of newly acquired motor sequences. Previous studies have also revealed that the interplay between different types of sleep oscillations (e.g. spindles, slow waves, sharp-wave ripples) promotes the consolidation process of declarative memories. Yet the functional contribution of this type of frequency-specific interactions to motor memory consolidation remains unknown. Thus, this study sought to investigate whether spindle oscillations are associated with low- or high-frequency activity at the regional (local) and interregional (connectivity) levels. Using an olfactory-targeted memory reactivation paradigm paired to a motor sequence learning task, we compared the effect of cuing (Cond) to no-cuing (NoCond) on frequency interactions during sleep spindles. Time-frequency decomposition analyses revealed that cuing induced significant differential and localized changes in delta (1-4 Hz) and theta (4-8 Hz) frequencies before, during, and after spindles, as well as changes in high-beta (20-30 Hz) during the spindle oscillation. Finally, coherence analyses yielded significant increases in connectivity during sleep spindles in both theta and sigma (11-17 Hz) bands in the cued group only. These results support the notion that the synchrony between spindle and associated low- or high-frequency rhythmic activity is an integral part of the memory reactivation process. Furthermore, they highlight the importance of not only measuring spindles' characteristics, but to investigate such oscillations in both time and frequency domains when assessing memory consolidation-related changes.


Asunto(s)
Ondas Encefálicas/fisiología , Señales (Psicología) , Consolidación de la Memoria/fisiología , Destreza Motora/fisiología , Fases del Sueño/fisiología , Adulto , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Memoria/fisiología , Sueño/fisiología , Sueño REM/fisiología , Adulto Joven
11.
Front Aging Neurosci ; 9: 265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848422

RESUMEN

Growing evidence from the neuroscience of aging suggests that executive function plays a pivotal role in maintaining semantic processing performance. However, the presumed age-related activation changes that sustain executive semantic processing remain poorly understood. The aim of this study was to explore the executive aspects of semantic processing during a word-matching task with regard to age-related neuro-functional reorganization, as well as to identify factors that influence executive control profiles. Twenty younger and 20 older participants underwent fMRI scanning. The experimental task was based on word-matching, wherein visual feedback was used to instruct participants to either maintain or switch a semantic-matching rule. Response time and correct responses were assessed for each group. A battery of cognitive tests was administrated to all participants and the older group was divided into two subgroups based on their cognitive control profiles. Even though the percentage of correct responses was equivalent in the task performance between both groups and within the older groups, neuro-functional activation differed in frontoparietal regions with regards to age and cognitive control profiles. A correlation between behavioral measures (correct responses and response times) and brain signal changes was found in the left inferior parietal region in older participants. Results indicate that the shift in age-related activation from frontal to parietal regions can be viewed as another form of neuro-functional reorganization. The greater reliance on inferior parietal regions in the older compared to the younger group suggests that the executive control system is still efficient and sustains semantic processing in the healthy aging brain. Additionally, cognitive control profiles underlie executive ability differences in healthy aging appear to be associated with specific neuro-functional reorganization throughout frontal and parietal regions. These findings demonstrate that changes in neural support for executive semantic processing during a word-matching task are not only influenced by age, but also by cognitive control profile.

12.
Front Hum Neurosci ; 11: 543, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29180957

RESUMEN

Objective: The purpose of this study was to explore the age-related brain activation changes during a word-matching semantic-category-based task, which required either repeating or changing a semantic rule to be applied. In order to do so, a word-semantic rule-based task was adapted from the Wisconsin Sorting Card Test, involving the repeated feedback-driven selection of given pairs of words based on semantic category-based criteria. Method: Forty healthy adults (20 younger and 20 older) performed a word-matching task while undergoing a fMRI scan in which they were required to pair a target word with another word from a group of three words. The required pairing is based on three word-pair semantic rules which correspond to different levels of semantic control demands: functional relatedness, moderately typical-relatedness (which were considered as low control demands), and atypical-relatedness (high control demands). The sorting period consisted of a continuous execution of the same sorting rule and an inferred trial-by-trial feedback was given. Results: Behavioral performance revealed increases in response times and decreases of correct responses according to the level of semantic control demands (functional vs. typical vs. atypical) for both age groups (younger and older) reflecting graded differences in the repetition of the application of a given semantic rule. Neuroimaging findings of significant brain activation showed two main results: (1) Greater task-related activation changes for the repetition of the application of atypical rules relative to typical and functional rules, and (2) Changes (older > younger) in the inferior prefrontal regions for functional rules and more extensive and bilateral activations for typical and atypical rules. Regarding the inter-semantic rules comparison, only task-related activation differences were observed for functional > typical (e.g., inferior parietal and temporal regions bilaterally) and atypical > typical (e.g., prefrontal, inferior parietal, posterior temporal, and subcortical regions). Conclusion: These results suggest that healthy cognitive aging relies on the adaptive changes of inferior prefrontal resources involved in the repetitive execution of semantic rules, thus reflecting graded differences in support of task demands.

13.
Sci Rep ; 7(1): 9406, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839217

RESUMEN

Animal models suggest that consolidated memories return to their labile state when reactivated and need to be restabilized through reconsolidation processes to persist. Consistent with this notion, post-reactivation pharmacological protein synthesis blockage results in mnemonic failure in hippocampus-dependent memories. It has been proposed that, in humans, post-reactivation experience with a competitive task can also interfere with memory restabilization. However, several studies failed to induce performance deficit implementing this approach. Moreover, even upon effective post-reactivation interference, hindered performance may rapidly recover, raising the possibility of a retrieval rather than a storage deficit. Here, to address these issues in procedural memory domain, we used new learning to interfere with restabilization of motor memory acquired through training on a sequence of finger movements. Only immediate post-reactivation interference was associated with the loss of post-training delayed gains in performance, a hallmark of motor sequence memory consolidation. We also demonstrate that such performance deficit more likely indicates a genuine memory impairment rather than a retrieval failure. However, the reconsolidation view on a reactivation-induced plasticity is not supported. Instead, our results are in line with the integration model according to which new knowledge acquired during the interfering experience, is integrated through its consolidation creating memory competition.


Asunto(s)
Destreza Motora , Análisis y Desempeño de Tareas , Adulto , Análisis de Varianza , Femenino , Humanos , Aprendizaje , Masculino , Memoria , Consolidación de la Memoria , Actividad Motora , Reproducibilidad de los Resultados , Adulto Joven
14.
PLoS One ; 12(4): e0174755, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28422976

RESUMEN

Motor memory consolidation is thought to depend on sleep-dependent reactivation of brain areas recruited during learning. However, up to this point, there has been no direct evidence to support this assertion in humans, and the physiological processes supporting such reactivation are unknown. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were conducted during post-learning sleep to directly investigate the spindle-related reactivation of a memory trace formed during motor sequence learning (MSL), and its relationship to overnight enhancement in performance (reflecting consolidation). We show that brain regions within the striato-cerebello-cortical network recruited during training on the MSL task, and in particular the striatum, were also activated during sleep, time-locked to spindles. Interestingly, the consolidated trace in the striatum was not simply strengthened, but was transformed/reorganized from rostrodorsal (associative) to caudoventral (sensorimotor) subregions. Moreover, the degree of the reactivation was correlated with overnight improvements in performance. Altogether, the present findings demonstrate that striatal reactivation linked to sleep spindles in the post-learning night, is related to motor memory consolidation.


Asunto(s)
Cerebelo/fisiología , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Aprendizaje/fisiología , Consolidación de la Memoria/fisiología , Desempeño Psicomotor/fisiología , Adulto , Cerebelo/anatomía & histología , Corteza Cerebral/anatomía & histología , Cuerpo Estriado/anatomía & histología , Vías Eferentes/anatomía & histología , Vías Eferentes/fisiología , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Polisomnografía , Sueño/fisiología
15.
Nat Commun ; 8(1): 1349, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116093

RESUMEN

Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.


Asunto(s)
Conectoma , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Reproducibilidad de los Resultados
16.
PLoS One ; 8(7): e67444, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23894288

RESUMEN

How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture") that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy"). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi-temporal integration (i.e., relates past, present, and future representations at different temporal scales).


Asunto(s)
Encéfalo/fisiología , Encéfalo/anatomía & histología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA