Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 52(6): 1280-1291, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31026391

RESUMEN

BACKGROUND/AIMS: Recent studies demonstrated that the treatment with mesenchymal stem cells (MSCs) obtained from the human umbilical cord blood improved survival, reduced brain damage, prevented apoptosis, suppressed inflammatory responses, downregulated the DNA damage-inducing genes, upregulated the DNA repair genes, and facilitated neurological recovery in stroke-induced animals. Emerging stroke literature supports the concept that the exosomes released from MSCs are the primary biological principles underlying the post-stroke neuroprotection offered by MSCs treatment. METHODS: Because the treatment with exosomes has a great potential to overcome the limitations associated with cell-based therapies, we tested the efficacy of exosomes secreted from HUCB-MSCs under standard culture conditions on post-stroke brain damage and neurological outcome in a rat model of ischemic stroke by performing TTC staining as well as the modified neurological severity scores, modified adhesive removal, beam-walking, and accelerating Rotarod performance tests before ischemia and at regular intervals until seven days reperfusion. RESULTS: Exosomes treatment attenuated the infarct size. Treatment with exosomes did not affect the post-stroke survival rate and body weight changes, but exacerbated the somatosensory and motor dysfunction and adversely affected the natural recovery that occurs without any treatment. CONCLUSION: Treatment with exosomes secreted from HUCB-MSCs under standard culture conditions attenuates the ischemic brain damage but does not improve the post-stroke neurological outcome.


Asunto(s)
Encéfalo/patología , Exosomas/trasplante , Células Madre Mesenquimatosas/citología , Accidente Cerebrovascular/terapia , Animales , Encéfalo/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Masculino , Actividad Motora , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Resultado del Tratamiento
2.
Cell Physiol Biochem ; 44(4): 1360-1369, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29186705

RESUMEN

BACKGROUND/AIMS: Stem cell treatment is one of the potential treatment options for ischemic stroke. We recently demonstrated a protective effect of human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) in a rat model of ischemic stroke. The treatment attenuated apoptosis and prevented DNA damage. A collection of published studies, including several from our laboratory, indicated the induction and detrimental role for several matrix metalloproteinases (MMPs) in post-stroke brain injury. We hypothesized that the HUCB-MSCs treatment after focal cerebral ischemia prevents the dysregulation of MMPs and induces the expression of endogenous tissue inhibitors of metalloproteinases (TIMPs) to neutralize the elevated activity of MMPs. METHODS: To test our hypothesis, we administered HUCB-MSCs (0.25 million cells/animal and 1 million cells/animal) intravenously via tail vein to male Sprague-Dawley rats that were subjected to a transient (two-hour) right middle cerebral artery occlusion (MCAO) and one-day reperfusion. Ischemic brain tissues obtained from various groups of rats seven days after reperfusion were subjected to real-time PCR, immunoblot, and immunofluorescence analysis. RESULTS: HUCB-MSCs treatment prevented the induction of MMPs, which were upregulated in ischemia-induced rats that received no treatment. HUCB-MSCs treatment also prevented the induction of TIMPs expression. The extent of prevention of MMPs and TIMPs induction by HUCB-MSCs treatment is similar at both the doses tested. CONCLUSION: Prevention of stroke-induced MMPs upregulation after HUCB-MSCs treatment is not mediated through TIMPs upregulation.


Asunto(s)
Metaloproteinasas de la Matriz/metabolismo , Trasplante de Células Madre Mesenquimatosas , Accidente Cerebrovascular/terapia , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Animales , Modelos Animales de Enfermedad , Sangre Fetal/citología , Masculino , Metaloproteinasas de la Matriz/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microscopía Fluorescente , Arteria Cerebral Media/lesiones , Ratas , Ratas Sprague-Dawley , Inhibidores Tisulares de Metaloproteinasas/genética , Regulación hacia Arriba/efectos de los fármacos
3.
Stroke ; 46(12): 3523-31, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26534974

RESUMEN

BACKGROUND AND PURPOSE: Matrix metalloproteinases (MMPs) have a central role in compromising the integrity of the blood-brain barrier (BBB). The role of MMP-12 in brain damage after ischemic stroke remains unknown. The main objective of the current study is to investigate the effect of MMP-12 suppression at an early time point before reperfusion on the BBB damage in rats. METHODS: Sprague-Dawley rats were subjected to middle cerebral artery occlusion and reperfusion. MMP-12 shRNA-expressing plasmids formulated as nanoparticles were administered at a dose of 1 mg/kg body weight. The involvement of MMP-12 on BBB damage was assessed by performing various techniques, including Evans blue dye extravasation, 2,3,5-triphenyltetrazolium chloride staining, immunoblot, gelatin zymography, and immunofluorescence analysis. RESULTS: MMP-12 is upregulated ≈31-, 47-, and 66-fold in rats subjected 1-, 2-, or 4-hour ischemia, respectively, followed by 1-day reperfusion. MMP-12 suppression protected the BBB integrity by inhibiting the degradation of tight-junction proteins. Either intravenous or intra-arterial delivery of MMP-12 shRNA-expressing plasmid significantly reduced the percent Evans blue dye extravasation and infarct size. Furthermore, MMP-12 suppression reduced the endogenous levels of other proteases, such as tissue-type plasminogen activator and MMP-9, which are also known to be the key players involved in BBB damage. CONCLUSIONS: These results demonstrate the adverse role of MMP-12 in acute brain damage that occurs after ischemic stroke and, thereby, suggesting that MMP-12 suppression could be a promising therapeutic target for cerebral ischemia.


Asunto(s)
Barrera Hematoencefálica/enzimología , Barrera Hematoencefálica/patología , Isquemia Encefálica/enzimología , Isquemia Encefálica/patología , Metaloproteinasa 12 de la Matriz/biosíntesis , Animales , Encéfalo/enzimología , Encéfalo/patología , Ratas , Ratas Sprague-Dawley
4.
Neurochem Res ; 39(8): 1511-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24879430

RESUMEN

Evidence suggests that apoptosis contributes significantly to cell death after cerebral ischemia. Our recent studies that utilized human umbilical cord blood-derived mesenchymal stem cells (hUCBSCs) demonstrated the potential of hUCBSCs to inhibit neuronal apoptosis in a rat model of CNS injury. Therefore, we hypothesize that intravenous administration of hUCBSCs after focal cerebral ischemia would reduce brain damage by inhibiting apoptosis and downregulating the upregulated apoptotic pathway molecules. Male Sprague-Dawley rats were obtained and randomly assigned to various groups. After the animals reached a desired weight, they were subjected to a 2 h middle cerebral artery occlusion (MCAO) procedure followed by 7 days of reperfusion. The hUCBSCs were obtained, cultured, and intravenously injected (0.25 × 10(6) cells or 1 × 10(6) cells) via the tail vein to separate groups of animals 24 h post-MCAO procedure. We performed various techniques including PCR microarray, hematoxylin and eosin, and TUNEL staining in addition to immunoblot and immunofluorescence analysis in order to investigate the effect of our treatment on regulation of apoptosis after focal cerebral ischemia. Most of the apoptotic pathway molecules which were upregulated after focal cerebral ischemia were downregulated after hUCBSCs treatment. Further, the staining techniques revealed a prominent reduction in brain damage and the extent of apoptosis at even the lowest dose of hUCBSCs tested in the present study. In conclusion, our treatment with hUCBSCs after cerebral ischemia in the rodent reduces brain damage by inhibiting apoptosis and downregulating the apoptotic pathway molecules.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Apoptosis/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Trasplante de Células Madre/tendencias , Animales , Isquemia Encefálica/patología , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
5.
Exp Neurol ; 374: 114727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360257

RESUMEN

Previous studies have demonstrated that endogenous tissue-type plasminogen activator (tPA) is upregulated in the brain after an acute ischemic stroke (AIS). While mixed results were observed in genetic models, the pharmacological inhibition of endogenous tPA showed beneficial effects. Treatment with exogenous recombinant tPA exacerbated brain damage in rodent models of stroke. Despite the detrimental effects of tPA in ischemic stroke, recombinant tPA is administered to AIS patients to recanalize the occluded blood vessels because the benefits of its administration outweigh the risks associated with tPA upregulation and increased activity. We hypothesized that tPA knockdown following recanalization would ameliorate sensorimotor deficits and reduce brain injury. Young male and female rats (2-3 months old) were subjected to transient focal cerebral ischemia by occlusion of the right middle cerebral artery. Shortly after reperfusion, rats from appropriate cohorts were administered a nanoparticle formulation containing tPA shRNA or control shRNA plasmids (1 mg/kg) intravenously via the tail vein. Infarct volume during acute and chronic phases, expression of matrix metalloproteinases (MMPs) 1, 3, and 9, enlargement of cerebral ventricle volume, and white matter damage were all reduced by shRNA-mediated gene silencing of tPA following reperfusion. Additionally, recovery of somatosensory and motor functions was improved. In conclusion, our results provide evidence that reducing endogenous tPA following recanalization improves functional outcomes and reduces post-stroke brain damage.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratas , Masculino , Femenino , Animales , Lactante , Activador de Tejido Plasminógeno , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Fibrinolíticos/uso terapéutico , Fibrinolíticos/farmacología , Modelos Animales de Enfermedad
6.
J Vet Dent ; 29(4): 242-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23505787

RESUMEN

Dentigerous cysts are infrequently seen in veterinary medicine, but the consequences of an undiagnosed dentigerous cyst can be severe. Dentigerous cysts, that can be sub-classified as eruption or follicular, are a type of benign odontogenic cyst. They can cause significant bony and dental destruction associated with expansion if they remain undiagnosed for a period of time. Dentigerous cysts are secondary to embedded or impacted teeth, however not every impacted tooth subsequently forms a dentigerous cyst. Intraoral dental radiographs are necessary to differentiate a missing tooth from an impacted tooth. This case demonstrates the successful surgical management of a dog with bilateral impacted mandibular canine teeth, with secondary dentigerous cyst formation.


Asunto(s)
Quiste Dentígero/veterinaria , Enfermedades de los Perros/diagnóstico , Enfermedades Mandibulares/veterinaria , Pérdida de Hueso Alveolar/veterinaria , Animales , Diente Premolar/patología , Diente Canino/patología , Perros , Masculino , Radiografía Dental Digital/veterinaria , Dehiscencia de la Herida Operatoria/veterinaria , Extracción Dental/veterinaria , Diente Impactado/veterinaria
7.
Front Neurosci ; 16: 1012812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267234

RESUMEN

We recently showed that the post-ischemic induction of matrix metalloproteinase-12 (MMP-12) in the brain degrades tight junction proteins, increases MMP-9 and TNFα expression, and contributes to the blood-brain barrier (BBB) disruption, apoptosis, demyelination, and infarct volume development. The objectives of this study were to (1) determine the effect of MMP-12 suppression by shRNA-mediated gene silencing on neurological/functional recovery, (2) establish the optimal timing of MMP-12shRNA treatment that provides maximum therapeutic benefit, (3) compare the effectiveness of acute versus chronic MMP-12 suppression, and (4) evaluate potential sex-related differences in treatment outcomes. Young male and female Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion and reperfusion. Cohorts of rats were administered either MMP-12shRNA or scrambled shRNA sequence (control) expressing plasmids (1 mg/kg; i.v.) formulated as nanoparticles. At designated time points after reperfusion, rats from various groups were subjected to a battery of neurological tests to assess their reflex, balance, sensory, and motor functions. Suppression of MMP-12 promoted the neurological recovery of stroke-induced male and female rats, although the effect was less apparent in females. Immediate treatment after reperfusion resulted in a better recovery of sensory and motor function than delayed treatments. Chronic MMP-12 suppression neither enhanced nor diminished the therapeutic effects of acute MMP-12 suppression, indicating that a single dose of plasmid may be sufficient. We conclude that suppressing MMP-12 after an ischemic stroke is a promising therapeutic strategy for promoting the recovery of neurological function.

8.
Neurochem Int ; 161: 105436, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283468

RESUMEN

Tissue-type plasminogen activator (t-PA) expression is known to increase following transient focal cerebral ischemia and reperfusion. Previously, we reported downregulation of t-PA upon suppression of matrix metalloproteinase-12 (MMP-12), following transient focal cerebral ischemia and reperfusion. We now present data on the temporal expression of t-PA in the brain after transient ischemia, as well as the interaction between MMP-12 and t-PA, two proteases associated with the breakdown of the blood-brain barrier (BBB) and ischemic brain damage. We hypothesized that there might be reciprocal interactions between MMP-12 and t-PA in the brain after ischemic stroke. This hypothesis was tested using shRNA-mediated gene silencing and computational modeling. Suppression of t-PA following transient ischemia and reperfusion in rats attenuated MMP-12 expression in the brain. The overall effect of t-PA shRNA administration was to attenuate the degradation of BBB tight junction protein claudin-5, diminish BBB disruption, and reduce neuroinflammation by decreasing the expression of the microglia/macrophage pro-inflammatory M1 phenotype (CD68, iNOS, IL-1ß, and TNFα). Reduced BBB disruption and subsequent lack of infiltration of macrophages (the main source of MMP-12 in the ischemic brain) could account for the decrease in MMP-12 expression after t-PA suppression. Computational modeling of in silico protein-protein interactions indicated that MMP-12 and t-PA may interact physically. Overall, our findings demonstrate that MMP-12 and t-PA interact directly or indirectly at multiple levels in the brain following an ischemic stroke. The present findings could be useful in the development of new pharmacotherapies for the treatment of stroke.


Asunto(s)
Isquemia Encefálica , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Metaloproteinasa 12 de la Matriz , Activador de Tejido Plasminógeno , Animales , Ratas , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Ataque Isquémico Transitorio/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , ARN Interferente Pequeño/genética , Activador de Tejido Plasminógeno/metabolismo
9.
Transl Stroke Res ; 12(5): 923-936, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33426628

RESUMEN

The intense inflammatory response triggered in the brain after focal cerebral ischemia is detrimental. Recently, we showed that the suppression of toll-like receptors (TLRs) 2 and 4 attenuates infarct size and reduces the expression of pro-inflammatory cytokines in the ischemic brain. In this study, we further examined the effect of unsuppressed induction of TLRs 2 and 4 on the expression of its downstream signaling molecules and pro-inflammatory cytokines 1 week after reperfusion. The primary purpose of this study was to investigate the effect of simultaneous knockdown of TLRs 2 and 4 on M1/M2 microglial polarization dynamics and post-stroke neurological deficits and the recovery. Transient focal cerebral ischemia was induced in young adult male Sprague-Dawley rats by the middle cerebral artery occlusion (MCAO) procedure using a monofilament suture. Appropriate cohorts of rats were treated with a nanoparticle formulation of TLR2shRNA and TLR4shRNA (T2sh+T4sh) expressing plasmids (1 mg/kg each of T2sh and T4sh) or scrambled sequence inserted vector (vehicle control) expressing plasmids (2 mg/kg) intravenously via tail vein immediately after reperfusion. Animals from various cohorts were euthanized during reperfusion, and the ischemic brain tissue was isolated and utilized for PCR followed by agarose gel electrophoresis, real-time PCR, immunoblot, and immunofluorescence analysis. Appropriate groups were subjected to a battery of standard neurological tests at regular intervals until 14 days after reperfusion. The increased expression of both TLRs 2 and 4 and their downstream signaling molecules including the pro-inflammatory cytokines was observed even at 1-week after reperfusion. T2sh+T4sh treatment immediately after reperfusion attenuated the post-ischemic inflammation, preserved the motor function, and promoted recovery of the sensory and motor functions. We conclude that the post-ischemic induction of TLRs 2 and 4 persists for at least 7 days after reperfusion, contributes to the severity of acute inflammation, and impedes neurological recovery. Unlike previous studies in TLRs 2 or 4 knockout models, results of this study in a pharmacologically relevant preclinical rodent stroke model have translational significance.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Infarto de la Arteria Cerebral Media , Inflamación/etiología , Masculino , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico
10.
Stroke Vasc Neurol ; 6(4): 519-527, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33741744

RESUMEN

BACKGROUND AND PURPOSE: The therapeutic potential of different stem cells for ischaemic stroke treatment is intriguing and somewhat controversial. Recent results from our laboratory have demonstrated the potential benefits of human umbilical cord blood-derived mesenchymal stem cells (MSC) in a rodent stroke model. We hypothesised that MSC treatment would effectively promote the recovery of sensory and motor function in both males and females, despite any apparent sex differences in post stroke brain injury. METHODS: Transient focal cerebral ischaemia was induced in adult Sprague-Dawley rats by occlusion of the middle cerebral artery. Following the procedure, male and female rats of the untreated group were euthanised 1 day after reperfusion and their brains were used to estimate the resulting infarct volume and tissue swelling. Additional groups of stroke-induced male and female rats were treated with MSC or vehicle and were subsequently subjected to a battery of standard neurological/neurobehavioral tests (Modified Neurological Severity Score assessment, adhesive tape removal, beam walk and rotarod). The tests were administered at regular intervals (at days 1, 3, 5, 7 and 14) after reperfusion to determine the time course of neurological and functional recovery after stroke. RESULTS: The infarct volume and extent of swelling of the ischaemic brain were similar in males and females. Despite similar pathological stroke lesions, the clinical manifestations of stroke were more pronounced in males than females, as indicated by the neurological scores and other tests. MSC treatment significantly improved the recovery of sensory and motor function in both sexes, and it demonstrated efficacy in both moderate stroke (females) and severe stroke (males). CONCLUSIONS: Despite sex differences in the severity of post stroke outcomes, MSC treatment promoted the recovery of sensory and motor function in male and female rats, suggesting that it may be a promising treatment for stroke.


Asunto(s)
Isquemia Encefálica , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/patología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia
11.
J Pathol ; 219(2): 163-72, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19526482

RESUMEN

Osteoarthritis (OA) is the most common form of joint disease in middle-aged and older individuals. Previous studies have shown that over-expression of matrix-degrading proteinases and proinflammatory cytokines is associated with osteoarthritic cartilage degradation. However, it remains unclear which transcription factors regulate the expression of these cartilage-degrading molecules in articular chondrocytes. This study demonstrated that mice lacking Nfat1, a member of the nuclear factor of activated T cells (NFAT) transcription factors, exhibited normal skeletal development but displayed loss of type II collagen (collagen-2) and aggrecan with over-expression of specific matrix-degrading proteinases and proinflammatory cytokines in young adult articular cartilage of load-bearing joints. These initial changes are followed by articular chondrocyte proliferation/clustering, progressive articular surface destruction, periarticular chondro-osteophyte formation and exposure of thickened subchondral bone, all of which resemble human OA. Forced expression of Nfat1 delivered with lentiviral vectors in cultured 3 month-old primary Nfat1 knockout (Nfat1(-/-)) articular chondrocytes partially or completely rescued the abnormal catabolic and anabolic activities of Nfat1(-/-) articular chondrocytes. These new findings revealed a previously unrecognized critical role of Nfat1 in maintaining the physiological function of differentiated adult articular chondrocytes through regulating the expression of specific matrix-degrading proteinases and proinflammatory cytokines. Nfat1 deficiency causes OA due to an imbalance between the catabolic and anabolic activities of adult articular chondrocytes, leading to articular cartilage degradation and failed repair activities in and around articular cartilage. These results may provide new insights into the aetiology, pathogenesis and potential therapeutic strategies for osteoarthritis.


Asunto(s)
Artritis Experimental/patología , Cartílago Articular/patología , Condrocitos/fisiología , Factores de Transcripción NFATC/deficiencia , Osteoartritis/patología , Animales , Apoptosis , Artritis Experimental/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/fisiopatología , Células Cultivadas , Condrocitos/metabolismo , Vectores Genéticos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lentivirus/genética , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Osteoartritis/metabolismo , Fenotipo , Soporte de Peso/fisiología
12.
Plast Reconstr Surg ; 145(1): 85e-93e, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31881615

RESUMEN

BACKGROUND: Objective assessment of tissue viability is critical to improve outcomes of cosmetic and reconstructive procedures. A widely used method to predict tissue viability is indocyanine green angiography. The authors present an alternative method that determines the relative proportions of oxyhemoglobin to deoxyhemoglobin through multispectral reflectance imaging. This affordable, hand-held device is noninvasive and may be used in clinic settings. The authors hypothesize that multispectral reflectance imaging is not inferior to indocyanine green angiography in predicting flap necrosis in the murine model. METHODS: Reverse McFarlane skin flaps measuring 10 × 3 cm were raised on 300- to 400-g male Sprague-Dawley rats. Indocyanine green angiography and multispectral reflectance imaging was performed before surgery, immediately after surgery, and 30 minutes after surgery. Clinical outcome images acquired 72 hours after surgery were evaluated by three independent plastic surgeons. Objective data obtained immediately after surgery were compared to postsurgical clinical outcomes to determine which method more accurately predicted flap necrosis. RESULTS: Nine reverse McFarlane skin flaps were evaluated 72 hours after flap elevation. Data analysis demonstrated that the 95 percent confidence intervals for the sensitivity of postoperative multispectral reflectance imaging and indocyanine green angiography imaging to predict 72-hour tissue viability at a fixed specificity of 90 percent for predicting tissue necrosis were 86.3 to 91.0 and 79.1 to 86.9, respectively. CONCLUSIONS: In this experimental animal model, multispectral reflectance imaging does not appear to be inferior to indocyanine green angiography in detecting compromised tissue viability. With the advantages of noninvasiveness, portability, affordability, and lack of disposables, multispectral reflectance imaging has an exciting potential for widespread use in cosmetic and reconstructive procedures.


Asunto(s)
Angiografía/métodos , Procedimientos de Cirugía Plástica/efectos adversos , Complicaciones Posoperatorias/diagnóstico por imagen , Piel/patología , Colgajos Quirúrgicos , Animales , Colorantes/administración & dosificación , Modelos Animales de Enfermedad , Fluorescencia , Humanos , Verde de Indocianina/administración & dosificación , Masculino , Necrosis/diagnóstico por imagen , Necrosis/etiología , Necrosis/patología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/patología , Ratas , Ratas Sprague-Dawley , Procedimientos de Cirugía Plástica/métodos , Piel/irrigación sanguínea , Supervivencia Tisular
13.
Infect Immun ; 77(11): 4827-36, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19703976

RESUMEN

Although Francisella tularensis subsp. tularensis is known to cause extensive tissue necrosis, the pathogenesis of tissue injury has not been elucidated. To characterize cell death in tularemia, C57BL/6 mice were challenged by the intranasal route with type A F. tularensis, and the pathological changes in infected tissues were characterized over the next 4 days. At 3 days postinfection, well-organized inflammatory infiltrates developed in the spleen and liver following the spread of infection from the lungs. By the next day, extensive cell death, characterized by the presence of pyknotic cells containing double-strand DNA breaks, was apparent throughout these inflammatory foci. Cell death was not mediated by activated caspase-1, as has been reported for cells infected with other Francisella subspecies. Mouse macrophages and dendritic cells that had been stimulated with type A F. tularensis did not release interleukin-18 in vitro, a response that requires the activation of procaspase-1. Dying cells within type A F. tularensis-infected tissues expressed activated caspase-3 but very little activated caspase-1. When caspase-1-deficient mice were challenged with type A F. tularensis, pathological changes, including extensive cell death, were similar to those seen in infected wild-type mice. In contrast, type A F. tularensis-infected caspase-3-deficient mice showed much less death among their F4/80+ spleen cells than did infected wild-type mice, and they retained the ability to express tumor necrosis factor alpha and inducible NO synthase. These findings suggest that type A F. tularensis induces caspase-3-dependent macrophage apoptosis, resulting in the loss of potentially important innate immune responses to the pathogen.


Asunto(s)
Apoptosis/fisiología , Caspasa 3/metabolismo , Francisella tularensis/inmunología , Tularemia/inmunología , Tularemia/patología , Animales , Caspasa 3/inmunología , Citocinas/biosíntesis , Citocinas/inmunología , Activación Enzimática/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Tularemia/enzimología
14.
Neuromolecular Med ; 21(4): 529-539, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31077035

RESUMEN

Emerging stroke literature suggests that treatment of experimentally induced stroke with stem cells offered post-stroke neuroprotection via exosomes produced by these cells. Treatment with exosomes has great potential to overcome the limitations associated with cell-based therapies. However, in our preliminary studies, we noticed that the exosomes released from human umbilical cord blood-derived mesenchymal stem cells (MSCs) under standard culture conditions did not improve the post-stroke neurological outcome. Because of this apparent discrepancy, we hypothesized that exosome characteristics vary with the conditions of their production. Specifically, we suggest that the exosomes produced from the cocultures of regular and oxygen-glucose-deprived (OGD) MSCs in vitro would represent the exosomes produced from MSCs that are exposed to ischemic brain cells in vivo, and offer similar therapeutic benefits that the cell treatment would provide. We tested the efficacy of therapy with exosomes secreted from human umbilical cord blood (HUCB)-derived MSCs under in vitro hypoxic conditions on post-stroke brain damage and neurological outcome in a rat model of transient focal cerebral ischemia. We performed the TTC staining procedure as well as the neurological tests including the modified neurological severity scores (mNSS), the modified adhesive removal (sticky-tape), and the beam walking tests before ischemia and at regular intervals until 7 days reperfusion. Treatment with exosomes obtained from the cocultures of normal and OGD-induced MSCs reduced the infarct size and ipsilateral hemisphere swelling, preserved the neurological function, and facilitated the recovery of stroke-induced rats. Based on the results, we conclude that the treatment with exosomes secreted from MSCs at appropriate experimental conditions attenuates the post-stroke brain damage and improves the neurological outcome.


Asunto(s)
Daño Encefálico Crónico/prevención & control , Isquemia Encefálica/terapia , Exosomas , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión/prevención & control , Animales , Peso Corporal , Daño Encefálico Crónico/etiología , Daño Encefálico Crónico/patología , Isquemia Encefálica/complicaciones , Hipoxia de la Célula , Técnicas de Cocultivo , Sangre Fetal/citología , Glucosa/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Oxígeno/farmacología , Equilibrio Postural , Desempeño Psicomotor , Ratas , Daño por Reperfusión/etiología , Regulación hacia Arriba
15.
Infect Immun ; 76(4): 1379-89, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18227174

RESUMEN

Host innate immune responses to many intracellular pathogens include the formation of inflammatory granulomas that are thought to provide a physical barrier between the microbe and host. Because two common features of infections with the live vaccine strain (LVS) of Francisella tularensis within the mouse liver are the formation of granulomas and the production of gamma interferon (IFN-gamma), we have asked what role IFN-gamma plays in hepatic granuloma formation and function. Francisella antigens were predominantly localized within granulomas of the livers of mice infected with F. tularensis LVS 4 days postinfection. Hepatic granulomas also contained large numbers of dying cells, some of which coexpressed the F4/80 macrophage antigen and activated caspase-3. IFN-gamma-deficient mice did not form normal numbers of hepatic granulomas and showed widely disseminated Francisella antigens within the liver. The incidence of cell death within hepatic granulomas also decreased significantly in the absence of IFN-gamma. Inducible NO synthase (iNOS) expression was restricted to the granulomas of wild-type mice but was not seen for IFN-gamma-deficient mice. Cell death within granulomas was also significantly decreased for iNOS-deficient mice. The predominant IFN-gamma-expressing cells in the liver were NK cells. Depleting NK cells resulted in the expression of bacterial antigens and iNOS outside the granulomas and the appearance of extensive hepatic focal necrosis. These findings indicate that IFN-gamma and hepatic NK cells that are activated during F. tularensis LVS infections regulate hepatic granuloma formation, the spatial containment of infection, the expression of iNOS, and the induction of cell death within the liver.


Asunto(s)
Vacunas Bacterianas/inmunología , Francisella tularensis/inmunología , Granuloma/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Hígado/inmunología , Vacunas Atenuadas/inmunología , Animales , Muerte Celular , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Granuloma/microbiología , Granuloma/patología , Interferón gamma/genética , Hígado/microbiología , Hígado/patología , Ratones , Ratones Endogámicos , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Tularemia/inmunología , Tularemia/microbiología , Tularemia/patología
16.
Mol Neurobiol ; 55(2): 1405-1409, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28155200

RESUMEN

The role of matrix metalloproteinase-12 (MMP-12) in the pathogenesis of several inflammatory diseases such as chronic obstructive pulmonary disease, emphysema, and asthma is well established. Several new studies and recent reports from our laboratory and others highlighted the detrimental role of MMP-12 in the pathogenesis of several neurological diseases. In this review, we discuss in detail the pathological role of MMP-12 and the possible underlying molecular mechanisms that contribute to disease pathogenesis in the context of central nervous system diseases such as stroke, spinal cord injury, and multiple sclerosis. The available information on the specific MMP-12 inhibitors used in several preclinical and clinical studies is also reviewed. Based on the reported studies to date, MMP-12 suppression could emerge as a promising therapeutic target for several CNS diseases that were discussed in this review.


Asunto(s)
Metaloproteinasa 12 de la Matriz/metabolismo , Esclerosis Múltiple/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Accidente Cerebrovascular/metabolismo , Humanos
17.
Stroke Vasc Neurol ; 3(3): 153-159, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30294471

RESUMEN

Background and purpose: Recent reports from our laboratory demonstrated the post-ischaemic expression profile of various matrix metalloproteinases (MMPs) in rats and the detrimental role of MMP-12 in post-stroke brain damage. We hypothesise that the post-stroke dysregulation of MMPs is similar across species and that genetic deletion of MMP-12 would not affect the post-stroke expression of other MMPs. We tested our hypothesis by determining the pre-ischaemic and post-ischaemic expression profile of MMPs in wild-type and MMP-12 knockout mice. Methods: Focal cerebral ischaemia was induced in wild-type and MMP-12 knockout mice by middle cerebral artery occlusion procedure by insertion of a monofilament suture. One hour after ischaemia, reperfusion was initiated by removing the monofilament. One day after reperfusion, ischaemic brain tissues from various groups of mice were collected, and total RNA was isolated and subjected to cDNA synthesis followed by PCR analysis. Results: Although the post-stroke expression profile of MMPs in the ischaemic brain of mice is different from rats, there is a clear species similarity in the expression of MMP-12, which was found to be predominantly upregulated in both species. Further, the post-stroke induction or inhibition of various MMPs in MMP-12 knockout mice is different from their respective expression profile in wild-type mice. Moreover, the brain mRNA expression profile of various MMPs in MMP-12 knockout mice under normal conditions is also different to their expression in wild-type mice. Conclusions: In the ischaemic brain, MMP-12 upregulates several fold higher than any other MMP. Mice derived with the genetic deletion of MMP-12 are constitutive and have altered MMP expression profile both under normal and ischaemic conditions.


Asunto(s)
Eliminación de Gen , Infarto de la Arteria Cerebral Media/enzimología , Metaloproteinasa 12 de la Matriz/deficiencia , ARN Mensajero/metabolismo , Transcriptoma , Animales , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Infarto de la Arteria Cerebral Media/genética , Masculino , Metaloproteinasa 12 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Ratas , Especificidad de la Especie , Factores de Tiempo
18.
Neuroscience ; 373: 82-91, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337240

RESUMEN

Toll-like receptor 2 (TLR2) and TLR4 belong to a family of highly conserved pattern recognition receptors and are well-known upstream sensors of signaling pathways of innate immunity. TLR2 and TLR4 upregulation is thought to be associated with poor outcome in stroke patients. We currently show that transient focal ischemia in adult rats induces TLR2 and TLR4 expression within hours and shRNA-mediated knockdown of TLR2 and TLR4 alone and in combination decreases the infarct size and swelling. We further show that TLR2 and TLR4 knockdown also prevented the induction of their downstream signaling molecules MyD88, IRAK1, and NFκB p65 as well as the pro-inflammatory cytokines IL-1ß, IL-6, and TNFα. This study thus shows that attenuation of the severity of TLR2- and TLR4-mediated post-stroke inflammation ameliorates ischemic brain damage.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Inflamación/metabolismo , Inflamación/prevención & control , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Animales , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Edema Encefálico/prevención & control , Isquemia Encefálica/complicaciones , Modelos Animales de Enfermedad , Escherichia coli , Técnicas de Silenciamiento del Gen , Inflamación/etiología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroprotección/fisiología , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/administración & dosificación , Distribución Aleatoria , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
19.
Toxicology ; 215(1-2): 48-56, 2005 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-16076519

RESUMEN

Haber's Rule and associated time to coma after monochloroacetic acid (MCA) exposure in male Sprague-Dawley (SD) rats and time to death after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in female Sprague-Dawley rats and male A/J mice were investigated at isoeffective or nearly isoeffective doses. Animals exposed to MCA received either single bolus intravenous (iv) doses or a loading dose rate via the iv route followed by a maintenance dose rate through subcutaneously implanted osmotic mini pumps. For TCDD, rats received a loading dose rate via bolus oral gavage followed by maintenance dose rates through iv injection every fourth day until death. Mice received both loading and maintenance (once a week) dose rates via oral gavage. Different dosing regimens were employed to demonstrate that the key to Haber's Rule lies not in the route of administration but in conducting experiments under conditions of kinetic steady state. Single doses of MCA produced inconsistent time responses but a reasonably constant c x t product (7657+/-391 mg/kg x min) which was not anticipated although it should have been expected because MCA's elimination half-life (2 h) is twice as long as its time to coma ( approximately 1h). Generation of kinetic steady state by infusion of MCA after iv injection of a loading dose rate resulted in a consistently decreasing time response with increasing dose which diminished the variability in the c x t (dose x time)=k relationship (8032+/-136 mg/kg x min). Both acute and chronic toxicity of TCDD under conditions of kinetic steady state yielded consistent time responses with inverse proportionality between dose and time leading to robust c x t=k products in both rats (1060+/-82 microg/kg x day) and mice (80+/-2 mg/kg x day).


Asunto(s)
Acetatos/toxicidad , Coma/inducido químicamente , Dioxinas/toxicidad , Pruebas de Toxicidad/normas , Animales , Relación Dosis-Respuesta a Droga , Femenino , Cinética , Masculino , Ratones , Ratones Endogámicos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
20.
Food Chem Toxicol ; 43(5): 729-40, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15778013

RESUMEN

Chronic toxicity of 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) including its carcinogenicity was studied in female Sprague-Dawley rats in lifetime experiments. Six single dose and three multiple dose rate experiments were conducted with a single dose corn oil control group and a multiple dose rate corn oil control group, respectively. The lowest dose (1.0 mg/kg) of HpCDD and multiple dose rates of corn oil (4.0 ml/kg every other week) both prolonged the life of rats by about 2 months over that of single dose corn oil controls. Higher doses resulted in a predictable shortening of the life of rats after single dose administrations as well as after multiple dose rate administrations. The c x t = k paradigm previously validated for acute toxicity [Toxicol. Sci. 49 (1999) 102] was confirmed for chronic toxicity including carcinogenicity of HpCDD. The c x t = k product was independent of dosing regimen. Anemia and squamous cell carcinoma of the lungs were the earliest and most prevalent endpoints of toxicity. A dose of 2.1 mg/kg and 3.1 mg/kg of HpCDD caused 16.6% and 73.3% lung cancer, respectively. Liver cancer had a low prevalence and was a very late effect occurring only at doses lethal acutely for most rats in the three highest dosage groups. There was no correlation in the dose-dependence of non-malignant hepatic lesions and liver cancer.


Asunto(s)
Anemia/inducido químicamente , Carcinógenos/toxicidad , Carcinoma de Células Escamosas/inducido químicamente , Neoplasias Pulmonares/inducido químicamente , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/toxicidad , Anemia/mortalidad , Animales , Pruebas de Carcinogenicidad , Carcinoma de Células Escamosas/mortalidad , Aceite de Maíz , Relación Dosis-Respuesta a Droga , Femenino , Neoplasias Pulmonares/mortalidad , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA