Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nanotechnology ; 34(16)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36645906

RESUMEN

Synaptic devices that emulate synchronized memory and processing are considered the core components of neuromorphic computing systems for the low-power implementation of artificial intelligence. In this regard, electrolyte-gated transistors (EGTs) have gained much scientific attention, having a similar working mechanism as the biological synapses. Moreover, compared to a traditional solid-state gate dielectric, the liquid dielectric has the key advantage of inducing extremely large modulation of carrier density while overcoming the problem of electric pinholes, that typically occurs when using large-area films gated through ultra-thin solid dielectrics. Herein we demonstrate a three-terminal synaptic transistor based on ruthenium-doped cobalt ferrite (CRFO) thin films by electrolyte gating. In the CRFO-based EGT, we have obtained multilevel non-volatile conductance states for analog computing and high-density storage. Furthermore, the proposed synaptic transistor exhibited essential synaptic behavior, including spike amplitude-dependent plasticity, spike duration-dependent plasticity, long-term potentiation, and long-term depression successfully by applying electrical pulses. This study can motivate the development of advanced neuromorphic devices that leverage simultaneous modulation of electrical and magnetic properties in the same device and show a new direction to synaptic electronics.

2.
Nano Lett ; 19(1): 353-361, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30537837

RESUMEN

Magnetization dynamics driven by an electric field could provide long-term benefits to information technologies because of its ultralow power consumption. Meanwhile, the Dzyaloshinskii-Moriya interaction in interfacially asymmetric multilayers consisting of ferromagnetic and heavy-metal layers can stabilize topological spin textures, such as chiral domain walls, skyrmions, and skyrmion bubbles. These topological spin textures can be controlled by an electric field and hold promise for building advanced spintronic devices. Here, we present an experimental and numerical study on the electric field-induced creation and directional motion of topological spin textures in magnetic multilayer films and racetracks with thickness gradient and interfacial Dzyaloshinskii-Moriya interaction at room temperature. We find that the electric field-induced directional motion of chiral domain wall is accompanied by the creation of skyrmion bubbles at certain conditions. We also demonstrate that the electric field variation can induce motion of skyrmion bubbles. Our findings may provide opportunities for developing skyrmion-based devices with ultralow power consumption.

3.
J Phys D Appl Phys ; 49(42)2016.
Artículo en Inglés | MEDLINE | ID: mdl-33100381

RESUMEN

Multilayers of [Co/Ni(t)/Co/Pt]×8 with varying Ni thickness were investigated for possible use as a free layer in magnetic tunnel junctions and spintronics devices. The thickness t of the Ni sub-layer was varied from 0.3 nm to 0.9 nm and the resulting magnetic properties were compared with (Co/Ni) and (Co/Pt) multilayers. As determined from magnetic force microscopy, magnetometry and ferromagnetic resonance measurements, all multilayers exhibited perpendicular magnetic anisotropy. Compared with (Co/Pt) multilayers, the sample with t of 0.9 nm showed almost the same anisotropy field of µ 0 H k = 1.15 T but the damping constant was 40% lower. These characteristics make these multilayers attractive for spin torque based magnetoresistive devices with perpendicular anisotropy.

4.
ACS Nano ; 18(22): 14339-14347, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38781247

RESUMEN

In alignment with the increasing demand for larger storage capacity and longer data retention, the electrical control of magnetic anisotropy has been a research focus in the realm of spintronics. Typically, magnetic anisotropy is determined by grain dimensionality, which is set during the fabrication of magnetic thin films. Despite the intrinsic correlation between magnetic anisotropy and grain dimensionality, there is a lack of experimental evidence for electrically controlling grain dimensionality, thereby impairing the efficiency of magnetic anisotropy modulation. Here, we demonstrate an electric field control of grain dimensionality and prove it as the active mechanism for tuning interfacial magnetism. The reduction in grain dimensionality is associated with a transition from ferromagnetic to superparamagnetic behavior. We achieve a nonvolatile and reversible modulation of the coercivity in both the ferromagnetic and superparamagnetic regimes. Subsequent electrical and elemental analysis confirms the variation in grain dimensionality upon the application of gate voltages, revealing a transition from a multidomain to a single-domain state, accompanied by a reduction in grain dimensionality. Furthermore, we exploit the influence of grain dimensionality on domain wall motion, extending its applicability to multilevel magnetic memory and synaptic devices. Our results provide a strategy for tuning interfacial magnetism through grain size engineering for advancements in high-performance spintronics.

5.
ACS Appl Mater Interfaces ; 15(12): 15832-15838, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36919974

RESUMEN

Neuromorphic computing (NC) is considered a potential vehicle for implementing energy-efficient artificial intelligence. To realize NC, several technologies are being investigated. Among them, the spin-orbit torque (SOT)-driven domain wall (DW) devices are one of the potential candidates. Researchers have proposed different device designs to achieve neurons and synapses, the building blocks of NC. However, the experimental realization of DW device-based NC is only at the primeval stage. Here, we have studied pine-tree DW devices, based on the Laplace pressure on the elastic DWs, for achieving synaptic functionalities and diode-like characteristics. We demonstrate an asymmetric pinning strength for DW motion in two opposite directions to show the potential of these devices as DW diodes. We have used micromagnetic simulations to understand the experimental findings and to estimate the Laplace pressure for various design parameters. The study provides a strategy to fabricate a multifunctional DW device, exhibiting synaptic properties and diode characteristics.

6.
ACS Nano ; 17(7): 6261-6274, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36944594

RESUMEN

Neuromorphic computing (NC) is gaining wide acceptance as a potential technology to achieve low-power intelligent devices. To realize NC, researchers investigate various types of synthetic neurons and synaptic devices, such as memristors and spintronic devices. In comparison, spintronics-based neurons and synapses have potentially higher endurance. However, for realizing low-power devices, domain wall (DW) devices that show DW motion at low energies─typically below pJ/bit─are favored. Here, we demonstrate DW motion at current densities as low as 106 A/m2 by engineering the ß-W spin-orbit coupling (SOC) material. With our design, we achieve ultralow pinning fields and current density reduction by a factor of 104. The energy required to move the DW by a distance of about 18.6 µm is 0.4 fJ, which translates into the energy consumption of 27 aJ/bit for a bit-length of 1 µm. With a meander DW device configuration, we have established a controlled DW motion for synapse applications and have shown the direction to make ultralow energy spin-based neuromorphic elements.

7.
ACS Appl Mater Interfaces ; 14(9): 11864-11872, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35229606

RESUMEN

Neuromorphic computing (NC), which emulates neural activities of the human brain, is considered for the low-power implementation of artificial intelligence. Toward realizing NC, fabrication, and investigations of hardware elements─such as synaptic devices and neurons─are crucial. Electrolyte gating has been widely used for conductance modulation by massive carrier injections and has proven to be an effective way of emulating biological synapses. Synaptic devices, in the form of synaptic transistors, have been studied using various materials. Despite the remarkable progress, the study of metallic channel-based synaptic transistors remains massively unexplored. Here, we demonstrated a three-terminal electrolyte gating-modulated synaptic transistor based on a metallic cobalt thin film to emulate biological synapses. We have realized gating-controlled, non-volatile, and distinct multilevel conductance states in the proposed device. The essential synaptic functions demonstrating both short-term and long-term plasticity have been emulated in the synaptic device. A transition from short-term to long-term memory has been realized by tuning the gate pulse parameters, such as amplitude and duration. The crucial cognitive behavior, including learning, forgetting, and re-learning, has been emulated, showing a resemblance to the human brain. Beyond that, dynamic filtering behavior has been experimentally implemented in the synaptic device. These results provide an insight into the design of metallic channel-based synaptic transistors for NC.


Asunto(s)
Materiales Biomiméticos , Cobalto/química , Metodologías Computacionales , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Transistores Electrónicos , Inteligencia Artificial , Aprendizaje , Neuronas/fisiología
8.
J Nanosci Nanotechnol ; 11(3): 2704-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449459

RESUMEN

Magnetic recording technology has come a long way, since the introduction of the first hard disk drives (HDD) in 1956. The areal density has grown by a factor of 200 million times and the HDD has stayed as a main candidate for mass storage of information. In order to maintain its lead over other competing technologies, HDD industry continues to invent several technologies. Having introduced perpendicular recording technology in the last 5 years, the industry is looking at introducing bit-patterned media or heat-assisted magnetic recording in the next five years. The researchers--looking at a longer term--are investigating 10 Tbits/in2 as the next major milestone. The issues and probable candidates for 10 Tbits/in2 magnetic recording technology are described from a material perspective.


Asunto(s)
Equipos de Almacenamiento de Computador/tendencias , Predicción , Magnetismo/instrumentación , Magnetismo/tendencias , Procesamiento de Señales Asistido por Computador/instrumentación , Grabación en Video/instrumentación , Grabación en Video/tendencias
9.
J Nanosci Nanotechnol ; 11(3): 2555-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449425

RESUMEN

In an array of closely spaced magnetic islands as in patterned media, magnetostatic interactions play a major role in widening the switching field distribution and reducing the thermal stability. Patterned antiferromagnetically coupled (AFC) media provide interesting systems for studying the effect of magnetostatic interactions on the reversal of closely spaced AFC bits in an array, as AFC structure helps to reduce the remanent magnetization (M(r)), leading to reduced magnetostatic interactions. Here, we study the magnetic reversal of single domain-patterned AFC CoCrPt:oxide bilayer system with perpendicular magnetic anisotropy, by imaging the remanence state of the bits after the application of a magnetic field with magnetic force microscopy (MFM). The influence of magnetostatic fields from the neighboring bits on the switching field distribution (SFD) for an entity in a patterned media is studied by varying the stabilizing layer thickness of the AFC structure and bit spacing. We observe a distinct increase in stability and coercivity with an increase in stabilizing layer thickness for the 40 nm spaced bits. This demonstrates the effectiveness of the AFC structure for reducing magnetostatic interactions in patterned media, such that high thermal stability can be achieved by the reduced M(r), without writability issues.


Asunto(s)
Magnetismo , Metales/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Electricidad Estática , Propiedades de Superficie
10.
J Nanosci Nanotechnol ; 11(3): 2619-22, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449439

RESUMEN

Magnetic and structural properties of ion implanted perpendicular recording media have been investigated. Effects of 12C+ ion implantation with the doses of 2 x 10(11), 10(13), 10(14) and 10(16) ions/cm2 in the magnetic recording layer of conventional granular and continuous perpendicular media are reported in this paper. Implantation with the highest fluence of 10(16) ions/cm2 resulted in change of the magnetization reversal mechanism, thereby reducing coercivity. In continuous media the implanted ions cause increase in pinning defects, leading to an increase in coercivity. In contrast, high dose was found to cause similar change in the crystallographic properties of both the granular and continuous media.


Asunto(s)
Iones , Magnetismo/instrumentación , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales
11.
J Nanosci Nanotechnol ; 11(3): 2661-4, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449449

RESUMEN

We investigated the effects of short annealing times on the magnetoelectronic properties of pseudo-spin-valves (PSV) with perpendicular magnetic anisotropy based on Co/Pd multilayers using a contact hot plate. In order to study the time scale at which the degradation of film properties occurs for possible application in perpendicular MgO-based magnetic tunnel junctions (MTJ), the results were compared against our previous study of Co/Pd PSV based on vacuum annealing. With contact annealing for up to 90 s, no significant changes to the current-in-plane giant magnetoresistance (CIP-GMR), interlayer coupling, sheet resistance and layer coercivities were observed for up to 200 degrees C. At 350 degrees C, a 39 to 46% decrease in CIP-GMR was observed for annealing times of 30 to 90 s, respectively, slightly lower than that observed for vacuum annealing at 230 degrees C for 1 h. Similar results were also obtained for interlayer coupling, sheet resistance and layer coercivities, indicating that short annealing times allow for reduced interlayer diffusion at higher temperatures. However, it is clear that significant degradation of GMR performance occurs at 350 degrees C and above even for annealing times as short as 30 s, indicating the potential difficulty of realizing Co/Pd-based perpendicular MgO-MTJ.


Asunto(s)
Cobalto/química , Magnetismo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Paladio/química , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales
12.
J Nanosci Nanotechnol ; 11(3): 2611-4, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449437

RESUMEN

For bit-patterned media, media with low remanent magnetization (M(r)) and high M(r) regions are needed for storing information, which is usually achieved by lithographically defining magnetic and non-magnetic regions. In this work, we have investigated the use of ion beam modification of media surface to define the low and high M(r) states using a medium that is at a low M(r) state to start with. The low M(r) state is achieved by the use of synthetic antiferromagnetic coupling obtained in Co-alloy/Ru/Co-alloy trilayer structured film. Local ion beam modification at 30 keV energy using Ga+ ions was used to create high M(r) regions. AFM and MFM observations indicated that patterned regions of low and high M(r) can be observed with ion beam irradiation. This technique is a potential method to achieve patterned media without the need of planarization techniques.


Asunto(s)
Cobre/química , Nanoestructuras/química , Rubidio/química , Cobre/efectos de la radiación , Iones , Magnetismo , Ensayo de Materiales , Nanoestructuras/efectos de la radiación , Rubidio/efectos de la radiación
13.
Sci Rep ; 7(1): 16208, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176632

RESUMEN

Precise control of domain wall displacement in nanowires is essential for application in domain wall based memory and logic devices. Currently, domain walls are pinned by creating topographical notches fabricated by lithography. In this paper, we propose localized diffusion of non-magnetic metal into ferromagnetic nanowires by annealing induced mixing as a non-topographical approach to form pinning sites. As a first step to prove this new approach, magnetodynamic properties of permalloy (Ni80Fe20) films coated with different capping layers such as Ta, Cr, Cu and Ru were investigated. Ferromagnetic resonance (FMR), and anisotropy magnetoresistance (AMR) measurements were carried out after annealing the samples at different temperatures (T an ). The saturation magnetization of Ni80Fe20 film decreased, and damping constant increased with T an . X-Ray photoelectron spectroscopy results confirmed increased diffusion of Cr into the middle of Ni80Fe20 layers with T an . The resistance vs magnetic field measurements on nanowires showed intriguing results.

15.
Sci Rep ; 5: 10153, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25950082

RESUMEN

Spin-wave nonreciprocity arising from dipole-dipole interaction is insignificant for magnon wavelengths in the sub-100 nm range. Our micromagnetic simulations reveal that for the nanoscale magnonic crystals studied, such nonreciprocity can be greatly enhanced via synthetic antiferromagnetic coupling. The nonreciprocity is manifested as highly asymmetric magnon dispersion curves of the magnonic crystals. Furthermore, based on the study of the dependence of the nonreciprocity on an applied magnetic field, the antiparallel alignment of the magnetizations is shown to be responsible for the enhancement. Our findings would be useful for magnonic and spintronics applications.

16.
Sci Rep ; 3: 1907, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23712784

RESUMEN

Ion implantation is a promising technique for fabricating high density bit patterned media (BPM) as it may eliminate the requirement of disk planarization. However, there has not been any notable study on the impact of implantation on BPM fabrication of FePt, particularly at nano-scale, where the lateral straggle of implanted ions may become comparable to the feature size. In this work, implantation of antimony ions in patterned and unpatterned L1(0)-FePt thin films has been investigated. Unpatterned films implanted with high fluence of antimony exhibited reduced out-of-plane coercivity and change of magnetic anisotropy from perpendicular direction to film-plane. Interestingly, for samples implanted through patterned masks, the perpendicular anisotropy in the unimplanted region was also lost. This noteworthy observation can be attributed to the displacement of Fe and Pt atoms from the implantation sites to the unimplanted areas, thereby causing a phase disorder transformation from L1(0) to A1 FePt.


Asunto(s)
Aleaciones/química , Hierro/química , Magnetismo , Nanoestructuras/química , Platino (Metal)/química , Anisotropía , Iones , Ensayo de Materiales , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA